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ABSTRACT 
Artificial neural networks (ANNs) are also known as a digitalized model of the mammalian brain and are used in 
pattern reorganization, including machine translation and speech reorganization. In addition, some attempts have been 
made to implement it in new drug design or discovery. Presently, the drug development process utilizes the complex 
approach in identifying a single lead hit which often fails multiple times due to its poor pharmacokinetic properties 
and severe side effects. This could be the outcome of poor screening approaches for hit candidates and neglecting 
the probable bias. However, ANNs can be helpful in decision-making for many researchers, as well as in clinical 
application. Also, for medicinal chemists, it may act as an effective tool to pick lead hit and predict the 3D protein 
confirmation to evaluate the effectiveness of the selected lead hit. The present study briefs on ANNs that can be used as 
a predictive tool to classify diseases, in vitro and in vivo data correlation, target identification, absorption, distribution, 
metabolism, excretion, and toxicity profiling, and its application in modern drug discovery. 

INTRODUCTION TO THE NEURAL NETWORK 
The development of various machine learning 

algorithms, i.e., naive Bayes classifiers, logistic regression, vector 
machines, and artificial intelligence systems, have contributed 
in the revolution of a new drug design which is also supported 
via in silico molecular docking and simulation, protein structure 
validation, molecular energy prediction, and virtual screening 
(Yang et al., 2019a, 2019b). In addition, the rapid development 
of neural network models due to huge data has improved multiple 
calibration techniques (Lopes et al., 2019; Schmidt et al., 2019). 
Furthermore, utilizing a large set of data series, the artificial neural 
network (ANN) models are adopted to correlate dependent and 
independent variables (Pasini, 2015).

A basic unit of the neural network comprises an input, 
hidden, and output layer and is similar to a human neuronal cell 
(Jothilakshmi and Gudivada, 2016). The input layer connects 
the hidden layer and transmits the signal, termed as X1, X2, X3, 
X4..... Xn, with their respective weights W1, W2, W3, W4.....Wn. The 
weight of each signal represents an input signal as they depend 
on the function and magnitude of signals. The summation of 
input signals with their respective weights, i.e., X1 W1 + X2 W2 + 
X3 W3 + X4 W4 +..... Xn Wn, is processed within the hidden layer 
and the output is obtained. The concept of the basic node of the 
neural network can be represented mathematically as y = f (I) =  
f (b + ∑n

i xi. wi), where b = bias, x = input to the neuron, 
w = weights, n = the number of inputs from the incoming layer, 
and i = counter from 0 to n and is similar to the human neural 
system (Figure 1).

Weights
A weight represents a connecting link between neurons 

with a numerical value (Dudek, 2017; Georgevici and Terblanche, 
2019) in which the value is directly proportional to the weight. If 
the value of weight is higher, it may possess an important input 
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signal that can be visualized in the matrix format, as shown in 
Figure 1.

Bias
A bias is a number that helps to understand the situation. 

This can be explained as if one tries to make a decision, he/she 
needs to focus on all the possible/observable factors (Dudek, 
2017). However, there could be multiple parameters or variables 
that may not be noticed. These unnoticed parameters or variables 
are tried to be incorporated in the neural network in terms of bias.

Activation
A neuron decides on its output and also makes a tiny 

decision for its output which is called activation. It can be 
represented as f (z), where z is the cluster of all inputs and can 
be categorized as binary, linear, and nonlinear (Dudek, 2017; 
Georgevici and Terblanche, 2019). Suppose, if an input value is 
above or below a basal threshold (also considered as a resting state 
of the neuron), the neuron gets activated and sends a signal to 
the next layer which is termed as binary activation. This function 
is limited with the multi-value output; categorization of multiple 
inputs is not possible with this activation. Therefore, it can be 
explained as a qualitative analysis as it provides the results as 
“yes” or “no” (Feng and Lu, 2019). 

In linear activation function, inputs are multiplied 
with respective weights to produce an output signal and are 
proportional to the input. Unlike binary activation, it provides 
multiple outputs. Mathematically, it can be explained as if 
f (z) = z, then f (z) is called linear activation, meaning nothing 
happens. However, it is limited with two major problems, i.e., it 
cannot be used in backpropagation to train the model and all the 
layers are collapsed into one (Feng and Lu, 2019).

Similarly, nonlinear neural activation produces the 
complex plot between the inputs and outputs to model the complex 
data. Nonlinear activation addresses the problems associated with 
linear activation via the backpropagation and creates the deep 
neural network. Some of the activation functions widely used 
to produce the complex plot in the ANN include sigmoid, TanH, 
ReLU, Leaky ReLU, parametric ReLU, softmax, and swish (Feng 
and Lu, 2019).

ANN AS A PREDICTIVE TOOL
ANN computes the output values from input by assigning 

the signals to binary as −1 or 1 which is compared with 0 and 
functions like the human brain neuron system. “Feedforward and 
backpropagation” are learning characteristics of an ANN in which 
it assesses its past errors and experiences via a parallel processing 
manner (Agatonovic-Kustrin and Beresford, 2000). Feedforward 
explains processing and recall patterns, whereas backpropagation 
explains the training of the neural network which is dependent 
on the sample input and predictable outputs. Furthermore, the 
predicted outputs are compared with the actual output for a given 
input. This tool can be used to analyze large biological data and 
can be designed via learning and processing characteristics. Since 
it is the outcome of collective behavior in the network due to the 
nodes’ interconnections, the network itself evaluates its output 
and again makes the secondary decision which is based on the 
input signal and calculated weighted sum, and compares it to 
the threshold. The calculations in ANNs are under the control of 
hidden layers and the algorithms set in it are based on the target 
or non-target types to decide the neural pattern of learning. If we 
assess the processing character of this system, the input of each 
signal is multiplied by its corresponding weight and is summed 
together before activation (Yang, 2009). Now, when we compare 
it to the human neuron, the dendrites receive information, process 
it at the soma, and the axons deliver the output. Hence, the ANN 
is an algorithm-based neural system where the information is 
received, processed, and delivered, which is similar to a human 
neuron. Therefore, it can be used to handle a large set of biological 
data, generate an outcome, and predict probable results.

The ANN with evolutionary algorithms has been 
implemented in the medical field for multiple pathogeneses, 
including Alzheimer’s disease, cardiovascular disease, 
gastroenterology amyotrophic lateral sclerosis (Grossi, 2006; 
Street et al., 2008). Although the implementation of ANN is under 
the new trend in medical science, the methods are not widely used; 
however, it has a clinical impact in specific areas including the early 
detection of acute myocardial infractions, X-ray mammography, 
and cervical cytology. The extensive implementation of ANN in 
this field has been detailed by Lisboa (2002).

Figure 1. Presentation of (a) human neuronal cell and (b) ANN.
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ANN AS A DISEASE CLASSIFIER
An ANN can handle the large data set to identify and 

characterize the subject or matter (Ahmadi et al., 2013; Pasini, 
2015). In this regard, actual or sample data are supplied to train 
and adjust network considering probable errors that are further 
validated with the standard scale (Michael et al., 2000) and to 
trigger the network to proceed, loop, and stop the processing that 
can be adjusted by manipulating the hidden layer if the outcome 
is unsatisfactory.

Let us explain this with one real-life example. Suppose 
a professor asks to explain type 1 and 2 diabetes mellitus. Now, 
the student starts considering a few keywords to differentiate 
these two pathogenic conditions by some keywords as “insulin-
deficient or insulin-resistant, any age or mostly in adults, sudden 
onset or gradual unset, common or rare ketoureosis, less or more 
prevalence, presence or absence of antibodies, and …”. Now, an 
algorithm can be written to classify type 1 and type 2 diabetes 
mellitus based on the above parameters and predict through 
mean square error and bewilderment matrices and judge the 
output value with the threshold. However, diabetes mellitus is a 
polygenic state in which multiple genes or proteins are involved 
in the development and progression of the disease. It means the 
pathogenesis of diabetes is not fully understood which may lead to 
an error that must be considered as bias in the hidden layer.

The disease problem can be tremendous in complex 
pathogenesis; however, ANN can classify complex diseases like 
cancer which are hard to distinguish. Furthermore, it can support 
determining the inclination of an individual to the particular 
pathogenesis via disease risk prediction via the evaluation of the 
specific gene or the mutation (Azati Team, 2021). Furthermore, an 
attempt was made to use the ANN to diagnose the heart disease 
where the feedforward propagational neural network was utilized 
in classifying the presence or absence of the disease which 
consisted of 13 input neurons, 20 in the hidden layer, and 1 as the 
output signal. The test and error method was used to fix the neuron 
numbers in the hidden layer, which demonstrated the efficacy of 
the network to diagnose or classify 88% of the cases in the given 
training set (Ajam, 2015).

Basically, by incorporating the multiple parameters 
of the disease, the pathogenesis algorithms can be designed to 
predict the disease’s severity and its complications. Of course, 
this may help to write algorithms for classifying the disease into 
mild, moderate, and severe that may be implemented in the rapid 
decision-making process.

APPLICATION FOR IN VITRO AND IN VIVO DATA 
CORRELATION (IVIVC)

One of the important criteria considered for the drug 
choice should be based on the subject’s demographic data which 
affects the pharmacokinetic- pharmacodynamic (PK-PD) profile. 
The data obtained in vitro can be correlated in vivo via ANN 
(Rackley, 1996). The utilization of ANNs in the field of PK-PD 
was described previously which is based on a backpropagation 
learning algorithm and was used as a Bayesian classifier by using 
simulated data. Attempts have been made to correlate in vitro–
in vivo findings for controlled released dosage formulations (de 
Matas et al., 2007, 2008; Parojčić et al., 2007).

Additionally, it is important to determine the drug’s 
pharmacokinetics (in vivo) profile based on the in vitro dissolution 
with other important variables. In IVIVC, it was observed that 
the input–output relationship may be independent of the internal 
configuration of the model if the model is validated which may 
play an important role in product development and establishing the 
dissolution specifications (Caramella et al., 1993; Graffner et al., 
1984; Sullivan et al., 1976). In this regard, multiple simple linear 
models can be implemented in describing the pharmacokinetic 
absorption; however, sometimes no correlation may be observed. 
This could be due to the unidentified or unconsidered factors; can 
be termed as bias meaning that the model may not account for 
some physiological rate-determining process; and contributed 
by probable built-in variables to the parameters of modeled 
relationship (Barr et al., 1994; Levy and Hollister, 1964; Wood 
et al., 1990).

First, let us have a look at the conventional method 
for the IVIVC. It involves (a) formulation with different in 
vitro drug release profiles, (b) evaluation of this formulation in 
vivo with an appropriate route of administration p.o. or i.v. with 
suitable references, (c) utilization of an appropriate procedure 
to estimate in vivo drug release; and (d) developing the suitable 
pharmacokinetic function to relate in vitro and in vivo data. 
Furthermore, if the process fails for IVIVC, multiple mechanistic 
or empirical functions are considered (Hussain, 1997).

In the ANN, a backpropagation-based network can be 
used for an IVIVC in which data utilized for training sets play 
an important role. Few approaches have been made in this case 
in which the in vivo efficacy of inhalers has been predicted using 
in vitro data via an ANN reflecting its efficacy. Furthermore, 
it was suggested to improve the model by considering other 
input factors like larger datasheets and subjects and other input 
variables that directly affect the inhalation (de Matas et al., 
2008). An ANN can also be utilized to correlate in vitro–in vivo 
data for metabolic clearance and dissolution kinetic of newly 
identified drug molecules (Dowell et al., 1999; Elçiçek et al., 
2014; Lavé et al., 1999; Schneider et al., 1999). One of the major 
benefits of an ANN is that it provides probable preliminary 
information of drug behavior without the conductance of in vivo 
experiments. Furthermore, the IVIVC model can be designed 
to predict the behavior of pharmaceutical formulations by 
using multiple physicochemical characteristics (Mendyk 
et al., 2013). This helps to understand the bioavailability of 
drug formulations in preliminary steps. Dowell et al. (1999) 
applied ANN to correlate the findings of the extended-release 
formulation. Herein, the authors utilized the initial training sets 
for 2 formulations from 1,512 pharmacokinetic time points 
from 9 patients which were enrolled for a cross-sectional study. 
Also, the authors evaluated 29 ANN configurations whose 
structure included feedforward, recurrent, jump connections, 
and general regression neural networks, with input–output 
association types, and the whole ANN was evaluated based on 
predictive performance.

PREDICTION FOR BLOOD–BRAIN BARRIER (BBB) 
PERMEABILITY

Approaches were made to predict the BBB permeability 
of compounds using ANNs by Garg and Verma (2006) and Chen 
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et al. (2009). Molecules designed to manage multiple psychiatric 
illnesses should cross the BBB which is composed of astrocytes, 
endothelial cells, and pericytes. However, multiple in vitro and 
in vivo approaches are considered to assess the drug efficacy to 
penetrate BBB, in silico prediction could be more effective as 
they are less expensive and easy to handle. Multiple in silico tools 
and online servers like admetSAR (Yang et al., 2019a, 2019b) are 
utilized to predict the oral bioavailability and BBB permeability 
of molecules. Advancing to these, the ANN could be the upgraded 
computational and decision-making tool to obtain the preliminary 
data as they are pattern recognizers (Kim, 2010). Multiple input 
signals reflecting the molecular weight, lipophilicity, and polar 
surface area of a molecule can be considered to provide the 
functional output of the BBB permeability score. Furthermore, 
a few parameters of the drug-like substance like hydrogen bond 
donors/acceptors may be considered to avoid bias. Additional 
parameters like plasma protein binding, disease presence, e.g., 
hyper or hypotension, and age may affect the BBB permeability 
which can be further considered to refine the algorithm to provide 
a better BBB permeability score.

ROLE OF NEURAL NETWORKS IN TARGET 
IDENTIFICATION AND VALIDATION

The target can be up- or downregulated to manage 
the disease; attempts to restore the homeostatic condition; and 
is an important criterion to introduce new therapeutic agents 
(Schenone et al., 2013). Furthermore, multiple protein modeling 
and simulations are also considered to identify a target for a 
disease (Schmidt et al., 2014). During target identification, anti-
targets are also considered and should not be modulated as it may 
lead to side or adverse effects due to their involvement in the 
homeostatic regulation of cell or tissue or organ function (Roman 
et al., 2018).

One of the concepts to be considered for identifying the 
drug target or predicting the biological spectrum is dependent 
on the probable activity and inactivity of the hit agent (Lagunin 
et al., 2000). To understand this, let us brief the phrase “master 
key unlocks multiple locks.” Similarly, a drug may modulate 
multiple proteins which could be dependent on the lipophilicity, 
molecular weight, and surface area or ligand volume, followed 
by its interaction with the active site, etc. Let us suppose the 
compound “X” targets two proteins “A” and “B” in which the 
probable activity of “X” for “A” is higher than “B.” Now, the 
target “A” is more dominant in disease “C” and “B” in “D.” 
Furthermore, let us assume that diseases “C” and “D” are 
independent. It means if the target is to be identified for the drug 
“X,” then target “A” should be considered to manage disease 
“C.” If “X” is utilized for disease “D” then undesirable effects 
may occur which can be termed as side effects for drug “X” in the 
management of disease “D” by targeting protein “B.” During this 
case, one may be aware of the probable activity of drug molecules 
over probable inactivity. Now, the case comes to incorporate this 
idea in machine learning. For this purpose, counterpropagation 
neural networks, Bayesian neural networks, and support vector 
machine algorithms can be utilized for target identification 
and validation. However, the output of the data is dependent 
upon the inputs considered, level of bias, and the algorithm 
used; could be more convenient for output prediction with the 

utilization of mathematical packages, like MATLAB (https://
www.mathworks.com/products/matlab.html) and Mathematica 
(https://www.wolfram.com/mathematica/), and purpose design 
packages, like Neural Lab (https://neurallab.io/) and JavaNNS 
(http://www.ra.cs.uni-tuebingen.de/software/JavaNNS/manual/
JavaNNS-manual.html). 

ROLE OF NEURAL NETWORK IN HIT IDENTIFICATION  
AND ABSORPTION, DISTRIBUTION, METABOLISM, 
EXCRETION, AND TOXICITY (ADMET) PROFILING

Among the series of compounds, the hit molecule can be 
considered with the highest pharmacological activity (depending 
on the probable activity and inactivity), drug-likeness score, and 
better ADMET profile. It means the predicted pharmacokinetic 
and pharmacodynamic data may play an important role to identify 
the lead hits against disease. Now, one problem is how to define 
the lead hit and what input signals should be considered? In this 
regard, ADME data can be considered including some toxicity 
parameters like herG inhibition, cardiotoxicity, hepatotoxicity, 
ototoxicity, neurotoxicity, nephrotoxicity, and Ames mutagenicity 
which can be freely predicted using open-source predictors like 
admetSAR (Yang et al., 2019a, 2019b). Furthermore, the probable 
activity of a molecule against a target can be used to predict the 
biological spectrum against identified disease. Also, decision-
making algorithms can be written to provide the output signal. 
However, as stated, it could be more complicated to identify the 
lead hit from a series of compounds as a single step includes 
the complex algorithm to process input signals. For example, to 
generate the input signals for drug absorption, all the factors that 
affect the drug absorptivity are to be considered. A simplified form 
of a neural network that can be considered to identify the lead hit 
is shown in Figure 2.

APPLICATION IN MODERN DRUG DISCOVERY
ANNs are defined as “digitalized models of the brain” as 

they are complex; utilize the nonlinear relationship; and the basic 
anatomy is similar to the human neurons (Zador, 2019). Thus, they 
have their importance in drug discovery and development with 
the proper utilization of virtual screening, quantitative structure-
activity relationship (QSAR) study, mathematical modeling, 
pharmacophore identification, in silico molecular docking, and 
ADMET prediction. Virtual screening may help to predict the 
biological spectrum of lead molecules (Ekins et al., 2007; Tang and 
Marshall, 2011). Furthermore, machine learning is also successfully 
implemented in the discovery of modern medicine based on 
target identification (gene–disease association, identification of 
splice variants, and target druggability prediction), compound 
design (reaction plan, ligand-based drug design), prediction of 
biomarkers (tissue-specific biomarkers, drug–response signature), 
and determination of drug response (cellular phenotyping and 
microenvironment measurement) (Vamathevan et al., 2019). In 
this regard, Bayesian neural networks can be used to identify 
the biomolecules that act on the brain and cardiovascular-related 
pathogenesis. Binding site identification of the receptor can be 
predicted via the pharmacophore modeling (Huang et al., 2018) in 
which the active site and its geometry play an important role and 
can be incorporated to predict molecular surface and create a 2D 
feature map. 
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In silico molecular docking also helps to identify the 
suitable pose of the ligand with its target (Meng et al., 2011). 
The ligand binds with the given target with some energy or 
affinity; explained in terms of the kcal/mol for AutoDock tools 
and also interacts with amino acid residues, i.e., hydrogen bond 
interactions or pi bond interactions. After docking, different poses 
of the ligand molecules are obtained from which the pose scoring 
the lowest binding energy is chosen to identify the ligand–protein 
interaction. Hence, this confirmation and the binding affinity can 
be trained in the neural network to identify the regulators of the 
protein. So, based on the binding energy, the pose with minimum 
binding energy can be considered as the input signals to the ANN. 
Furthermore, the ADMET profile also plays an important role in the 
drug development steps to evaluate the probable pharmacokinetic 
profile of lead candidates (Morgan, 2011). Multiple in silico 
tools can be utilized to identify the probable toxicity to assess 
the probable activity of the biomolecules for ADMET which 

may be used in predicting the drug sensitivity, chemical-genetic 
association, assessing the structure–activity relationship via 
the multiple regression analysis methods using decision trees, 
principal components, and linear, portal least square, and 
Gaussian process regression. Likewise, drug–target association 
and tissue-specific biomarkers can be traced via the classifier 
methods via natural language processing kernel methods, gradient 
boosting, Bayesian classifier, nearest neighbor, and discriminant 
analysis. Additionally, single-cell information, image analysis, 
and biomarker assessment can help in target druggability via 
the clustering method through a generative adversarial network, 
Gaussian mixture, k-means, and hierarchical clustering (Fig. 3) 

Due to the ANN efficacy to task concerning the trained 
dataset, it can self-correct the errors, organize and store the learned 
information, and compute faster data integration and retrieval 
(Mandlik et al., 2016). Additionally, ANN can investigate the 
complex and nonlinear relationship and find the application in 

Figure 2. Simplified ANN to identify lead hit in drug discovery.

Figure 3. Application of machine learning tools in drug discovery.
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various fields including modern drug discovery. Also, they are used 
in the discriminant and regression data analysis which benefits in 
screening the huge inhibitor libraries and ligand properties based 
on pharmacophore features, QSAR, docking outputs, and ADMET 
profile (Mandlik et al., 2016). However, machine learning needs 
large data with specific characters like the requirement of the 
standardized high-dimensional drug–target–disease dataset, 
comprehensive omics data, successful and unsuccessful metadata 
from clinical trials, training dataset, compound reaction models, 
gold standard ADME data, and various protein structures 
(Vamathevan et al., 2019).

CONCLUSION
ANN can be utilized in mapping the relationship 

between one variable with other variables. Furthermore, it uses 
the nonlinear relationship and is a powerful predictive tool in 
analyzing the data compared to statistical analysis. Although 
the identification of lead hit to manage disease pathogenesis 
is a complex process and understanding the disease is time-
consuming, the systematic utilization of ANN could resolve this 
problem and help to understand the disease and identify new drug 
candidates. From a future perspective, one can utilize advanced 
machine learning systems to progress technical advancement and 
also improve artificial intelligence performance in drug discovery. 
In addition, it is also important to handle the noisy data which can 
be managed via advanced deep learning. However, an ANN is also 
not free from a few limitations like overfitting and undertaking, 
error in the standard datasheet, the requirement of abundant data 
to construct the standard datasheet, and its diversity. 
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