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ABSTRACT 
Metabolic syndrome (MetS) and prostate cancer (PCa) are among the diseases with a concerning prevalence. The 
reported cases for both medical dilemmas have been steady with no sign of abating at the moment. More worrying 
is that researchers have started to discover that some of the components of MetS associatively worsen the prognosis 
of PCa. Even though the relationship is not fully known, its manifestation could cause extra burden to the currently 
implemented treatment approaches. The use of plant bioactive compounds as an alternative treatment has gained 
recognition, provided that its mechanisms of action, tolerability, efficacy, safety, and cost-effectiveness are well 
understood. Therefore, the current review intended to highlight the potential of bioactive compounds derived from 
plants to simultaneously target MetS, PCa, and MetS–PCa codisease. Additionally, emphasis on the potential of 
Andrographis paniculata (AP) as a candidate for the treatment of MetS–PCa is also highlighted.

INTRODUCTION
The prevalence of prostate cancer (PCa) is increasing in 

our community. In Asian regions, the incidence of PCa has been on 
the rise from 5% in 1978 to 118% in 1997 in the indexed countries 
(Sim and Cheng, 2005), and there is no sign of this trend abating. 
At present, PCa is the sixth most frequent cancer among Asian 
men (Chen et al., 2014). In other regions, similar trends have also 
been reported. PCa is among the top contributors that make up 
half of the overall burden of cancer in Europe in 2018 (Ferlay 
et al., 2018). In a recent report published by the Ministry of Health 
of Malaysia, 3,132 cases were reported between 2007 and 2011. 
Following that, between 2012 and 2016, the total reported case 
increased to 4,189 (Azizah et al., 2019). It is expected that by 
2030, 1.7 million new PCa cases and 499,000 deaths will occur in 

the entire world, and this cancer will be the most common in men 
in the future (Pakzad et al., 2015). 

The development of PCa is multifactorial. However, it 
has been observed that the progression is worse among individuals 
with metabolic syndrome (MetS), which comprises a series of 
systemic dysfunctions including high adiposity, hyperglycemia, 
hypertension, and dyslipidemia. A meta-analysis conducted on 
previously published academic manuscripts found that MetS 
was associated with a 12% increase in PCa risk. However, the 
association was only significant in the studies conducted in 
Europe but not in those in the USA and Asia. The same report 
also emphasized that hypertension and waist circumference of 
>102 cm were associated with a significantly higher risk of PCa at 
15% and 56%, respectively (Esposito et al., 2013). Nevertheless, 
another meta-analysis reported that men with MetS have a lower 
relative risk to develop PCa and its associated mortality. Yet, 
the same report highlighted that men with MetS are more likely 
to suffer from high-grade PCa and more advanced disease, and 
they are also at a greater risk of disease progression after radical 
prostatectomy and are more likely to succumb to PCa-specific 
death (Xiang et al., 2013).
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One of the mediators between MetS and PCa is the 
high level of hormones and cytokines secreted by adipocytes. 
An earlier study reported that long-term exposure to high leptin 
levels significantly worsens PCa prognosis (Noda et al., 2015). 
Additionally, the action of leptin is more pronounced in the 
androgen-resistant PCa cells (Hoda et al., 2012). As such, the 
treatment approach using leptin antagonist has gained a great 
amount of research interest. For example, a leptin antagonist 
Leu-Asp-Phe-Ile (LDFI) has been successfully derived from 
amino acids and it was discovered to have growth and migration 
inhibitory effects on breast cancer cells after further testing in an 
animal model (Catalano et al., 2015). Additionally, plant-derived 
leptin antagonist, honokiol, has been discovered from Magnolia 
grandiflora. It can negatively mediate the growth of breast cancer 
cells by inhibiting leptin-induced epithelial–mesenchymal transition 
(EMT) and mammosphere formation along with a reduction in the 
expression of stemness factors (Avtanski et al., 2015). Apart from 
that, resveratrol has also been reported to reduce leptin expression 
from isolated rat adipocytes (Szkudelska et al., 2009). This finding 
provides great insight into the potential of plant-derived bioactive 
compounds as one of the treatment strategies of PCa.

With these insights, the therapeutic potential of plant 
phytochemicals has been gaining more research attention. One 
such plant that has sparked great research interest is Andrographis 
paniculata (AP). AP is an herbaceous plant that is most commonly 
recognized as the King of Bitter, Kalmegh, or Hempedu Bumi 
(Mishra et al., 2007). Traditionally, AP has been used to treat 
ailments such as fever, inflammation, viral and bacterial infections, 
and upper respiratory tract infection. It has also been used as an 
agent in the modulation of the immune system (Chao et al., 2011; 
Saxena et al., 2010). As a result, many discoveries have been made 
on the features of AP. Within the context of this review, AP has been 
found to inhibit the growth of cancer cells (Suriyo et al., 2014) and 
some components of MetS (Islam, 2017). Therefore, AP is an herb 
with high potential for the treatment of PCa–MetS codisease.

METHODOLOGY
The literature for this review was conducted by searching 

various scientific electronic databases including Google Scholar, 
PubMed, Web of Science, SciFinder, Science Direct, American 
Chemical Society (ACS) Publications, Elsevier, and Wiley 
Online Library. Keywords used during the search were “AP” 
OR “Phytochemical” OR “Isolation” OR “PCa” OR “MetS” OR 
“Diabetes mellitus” OR “Hyperglycemia” OR “Hypertension” OR 
“Obesity” OR “Triglyceride” OR “Adipokine” OR “Cytokine”. 
Occasionally, these keywords were combined using the ‘AND’ 
search function to generate more specific and refined search 
results. Additional information was derived from other literature 
sources (books, journals, and thesis written in English). To 
provide the most current overview of the topic, the search was 
restricted to include sources published from 2000 onward. Only 
when extremely necessary to support the discussion of the 
review, earlier sources were included. The review emphasizes 
the pathological relationship between MetS components and 
PCa. Then, bioactive phytochemicals isolated from AP were 
studied as one of the promising agents to intervene in the disease 
relationship. Whenever possible, the mechanism of action of the 
bioactive compounds was also reviewed and discussed.

RESULT & DISCUSSION

Key component relationship between MetS and PCa
MetS is comprised of high adiposity, hypertension, 

dyslipidemia, and hyperglycemia that are suspected to play a 
significant role in the worsening of PCa prognosis (Figure 3). In 
men with dyslipidemia, a 9% increase in recurrence risk has been 
observed for every 10 mg/dl increase in cholesterol level (Allott 
et al., 2014) and with elevated serum triglycerides, increased risk 
of recurrence after radical prostatectomy has also been noted. 
Moreover, Wright et al. (2013) reported that those with elevated 
glucose (≥100 mg/dl) had a 50% increased risk of recurrence 
compared to those with a normal glucose level (<100 mg/dl). As 
a result, glucose levels at the time of PCa diagnosis are suggested 
to be an independent predictor of PCa recurrence. These findings 
suggest that there is some relationship between MetS with PCa 
development that warrants our attention. The following section 
discusses the key components linking MetS with PCa based on a 
thorough literature search.

Leptin
The core contributor of MetS is high adiposity. One of the 

physiological functions of adipocytes is the secretion of essential 
adipokines for regular systemic maintenance. For instance, leptin 
is required for the maintenance of energy homeostasis and in the 
balancing of body weight. Its deficiency or genetic defects in the 
components of the leptin signaling pathways can cause obesity 
(Zhou and Rui, 2013). However, in a pathological setting, leptin 
can pose deleterious effects in PCa development (Fig. 1).

An in vitro study revealed that long-term exposure to 
leptin can enhance the growth of all main PCa cell lines (LNCaP, 
DU145, and PC-3) (Noda et al., 2015), where androgen-insensitive 
cells, DU145, and PC-3 show a stronger proliferative response 
(Hoda et al., 2012). Leptin also induces the expression of vascular 
endothelial growth factor (VEGF), transforming growth factor-β1 
(TGF-β1), and basic fibroblast growth factor in DU145 and PC-3 
cells, stimulating cell survival, proliferation, and angiogenesis 
(Frankenberry et al., 2004).

Leptin can influence estrogen metabolism and causes 
an increase in the expression of estrogen receptor (ER)-α and a 
decrease in ER-β (Habib et al., 2015). At the same time, it can 

Figure 1. The role of leptin in the development of hypertension (Hall et al., 
2015).
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also induce cellular migration of human PCa cells via upregulation 
of integrin and intracellular signal transduction (Huang et al., 
2011). Obese mice injected with murine androgen-insensitive PCa 
cell line RM-1 developed larger tumors and had stronger Ki-67 
staining (Ribeiro et al., 2010).

Tumor necrosis factor-α (TNF-α)
Adipocytes are also responsible for the secretion of 

TNF-α. They are needed to promote tumor apoptosis, enhance 
vascular permeability to allow passage of drugs to the tumor 
sites, and inhibit angiogenesis at a high concentration (Zidi et al., 
2010). TNF-α has also been reported to inhibit neovascularization, 
induce apoptosis of PCa cells, and stimulate antitumor immunity 
(Tse et al., 2012).

Paradoxically, an experiment conducted on transgenic 
adenocarcinoma of the mouse prostate mice suggested that 
elevated TNF-α correlates with higher mortality (Xu et al., 2015), 
suggesting TNF-α as one of the mediators to PCa. Its effect on 
other cancer cells, such as breast (Ma et al., 2017) and colorectal 
(De Simone et al., 2015), have also been reported. Simultaneously, 
there is evidence that it stimulates tumor angiogenesis, is involved 
in the initiation of PCa from an androgen-dependent to a castration-
resistant state, and plays a role in EMT plasticity. Nevertheless, 
through meta-analysis, a recent study found that the dual effect 
of TNF-α on PCa is due to gene polymorphism (Ma et al., 2014).

Interleukin-6 (IL-6)
IL-6 functions in the regulation of the immune system, 

the nervous system, liver regeneration, and the metabolic control 
of the body (Rose-John, 2012). However, in people suffering 
from obesity, the IL-6 level is higher than usual to the point that 
it becomes deleterious (Popko et al., 2010). As it is one of the 
major inflammatory markers, its high concentration could gravely 
cause other problems. People with MetS are reported to have a 
higher inflammatory status, leading to other complications such 
as higher oxidative stress (Chen et al., 2012a) and cancer (Braun 
et al., 2011).

During PCa carcinogenesis, IL-6 and its receptors are 
elevated (Azevedo et al., 2011). In patients with metastatic tumors, 
IL-6 acts as a chemoattractant. The expression of excessive IL-6 
in the lung, liver, or brain may attract the circulating tumor cells 
(Knüpfer and Preiss, 2008). Moreover, IL-6 can shift from a 
paracrine growth inhibitor to an autocrine growth stimulator in 
PCa cells, supporting its role in castration-resistant prostate cancer 
(CRPC) development. At an elevated level, resistance toward 
chemotherapy is predictive (Bonuccelli et al., 2014). 

Elevated levels of IL-6 also stimulate hyperactivation 
of JAK/STAT3 signaling, which is often associated with poor 
treatment outcomes (Johnson et al., 2018). IL-6 signaling can also 
activate ERK1/2 signaling, leading to resistance to chemotherapy 
and immune-evasive phenotype in several cancer cells, including 
PCa (Salaroglio et al., 2019). The phosphoinositide 3-kinase 
(PI3K) signaling pathway is also activated by IL-6 in many 
cancers, causing cellular growth, survival, and proliferation. 
Overexpression of PI3K isoforms is also a cause for relapse and 
therapy resistance (Kim et al., 2019). IL-6 also may be involved 
in the metastatic process of PCa through the regulation of EMT 
(Rojas et al., 2011).

Micro-RNA 301a (miR-301a)
The elevated glucose level also has been known to 

increase the expression of miR-301a in PCa cells, thereby 
promoting G1/S cell cycle transition and accelerating cell 
proliferation (Li et al., 2019). The overexpression of miR-301a 
may also activate the invasion/migration of PCa cells (Damodaran 
et al., 2016). Also, high levels of miR-301a (above the median) 
were associated with an increased risk of biochemical recurrence 
(Nam et al., 2016). Due to its differential expression in PCa and 
benign samples, it has been utilized as a marker for differentiating 
whether a sample is cancerous or not. Its expression has been 
reported to be significantly higher in both serum and tumor tissue 
in patients with PCa compared to patients with benign prostatic 
hyperplasia (BPH). Furthermore, the expression of miR-301a in 
prostatectomy specimens correlated with an increased Gleason 
score (Kolluru et al., 2018).

EMT
Hyperglycemia could also modulate EMT by decreasing 

the E-cadherin level and increasing the N-cadherin level (Li et al., 
2016). Loss of E-cadherin facilitates dissociation of cancer cells 
from the tumor mass (origin site) and promotes tumor metastasis 
(Putzke et al., 2011). Patients with hyperglycemia showed a 
decreased E-cadherin/N-cadherin (CDH1/CDH2) ratio in prostate 
tissue, an indication of EMT (Franko et al., 2020). 

Mature adipocyte cells also have been reported to 
secrete TGF-β1 (El-Hattab et al., 2020). In the hyperglycemic 
state, TGF-β1 signaling hyperactivation is eventually causing 
a reduction in E-cadherin expression (Rahn et al., 2018). This 
hormone has been described to affect the CDH1/CDH2 ratio 
through PI3K/AKT/mTOR and Smad signaling (Luo et al., 2019). 

Matrix metalloproteinases (MMPs)
At increased glucose concentrations, increased gene 

expression levels of MMPs have been detected (Franko et al., 
2020). Additionally, a high glucose (25 mM) level has been known 
to induce the activity of the collagenase (MMP-1) and gelatinase 
(MMP-2) (Death et al., 2003). Elevated MMP activity promotes 
PCa progression not only by facilitating metastasis (Fig. 2) but 
also by profoundly impacting multiple steps of cell proliferation, 
apoptosis, angiogenesis, and EMT (Gong et al., 2014). A report 
from Trudel et al. (2003) also indicated that both malignant and 
normal prostate cells express MMP-2, but higher levels of MMP-2 
expression in malignant prostate glands were noted compared to 
its normal counterpart. Prostate tumor-derived MMP-3 has also 
contributed to metastatic tumor growth in the bone, both in vitro 
and in vivo (Frieling et al., 2020).

Dyslipidemia
Dyslipidemia is also somewhat related to the 

pathogenesis of PCa. Low high-density lipoprotein cholesterol 
(HDL-C) level was found to be a risk and prognostic factor of 
PCa in several epidemiologic studies, although the overall linkage 
between HDL and PCa has not been definitively established 
(Kotani et al., 2013). In a study conducted among Chinese people 
with PCa, the level of low-density lipoprotein cholesterol (LDL-C) 
and total cholesterol was significantly higher and the HDL-C level 
is much lower (Zhao et al., 2017). Also, high triglyceride levels 
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were reported to correlate well with a higher incidence of PCa, 
especially in patients aged ≥60 years. This group also tends to 
present with a higher Gleason score of ≥8 (Hayashi et al., 2012). A 
retrospective study on 843 radical prostatectomy patients revealed 
that elevated serum triglycerides were associated with an increased 
risk of PCa recurrence (Allott et al., 2014). The mechanisms 
on how dyslipidemia correlates with PCa growth are still not 
yet elucidated. Some of the current meta-analyses concluded 
that the relationship is either not related (Cheng et al., 2019) or 

even inversely related (Ulmer et al., 2009). Perhaps, the role of 
lipid only comes into play during stress situations. For example, 
under hypoxic conditions, significantly higher proliferation was 
observed in PCa cells following reoxygenation associated with 
rapid use of accumulated lipids (Schlaepfer et al., 2015).

AP and its isolates as a potential agent to combat MetS–PCa 
codisease

AP is an herbaceous plant that is commonly known as 
Kalmegh (Bengali, Hindi), King of Bitter (English), Hempedu 
Bumi (Malay), Chuan Xin Lian (Chinese), Kirata (Sanskrit), and 
Shenshinren (Japanese) (Bone and Mills, 2013). It belongs to the 
family Achantaceae and it is ordinarily recognized based on its 
distinctive bitter taste. AP is known to be a native of India, Mainland 
China, and Taiwan. However, it can also be found in abundance in 
most Asian and south-east Asian countries (Hossain et al., 2014). 
Despite its exclusive favor in the tropical and subtropical regions 
(owing to the moist nature), cultivation attempts in the temperate 
regions of the globe have also been reported. The geographical 
locality of AP is wide ranging. It can grow healthily on roadsides, 
hill slopes, moist lands, gardens, farms, plane lands, waste ground, 
forest, and seashores (Hossain et al., 2014). Structurally, AP 
manifests the size of common shrubs with a height ranging from 
30 to 110 cm.

The analysis of the crude alcohol extracts of the whole 
plant, leaf, and stem of AP revealed the presence of over 20 
diterpenoids and over ten flavonoids. Among the most prominent 
phytochemicals, diterpenoid lactones stand out to be the most 
significant compound of AP, with andrographolide making up Figure 2. The action and relationship of VEGF and MMP-9 in the metastasis of 

cancer cells (Deryugina and Quigley, 2010).

Figure 3. The relationship between MetS and cancer progression (Cowey and Hardy, 2006).
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about 4%, 0.8%~1.2%, and 0.5%~6% in dried whole plant, stem, 
and leaf extracts, respectively (Chao and Lin, 2010). The other main 
diterpenoids are dehydroandrographolide, deoxyandrographolide, 
and neoandrographolide (Sriramaneni et al., 2019) with contents 
amounting to 1.12%~1.97% (leaves) (Yanfang et al., 2006), 
0.57%, and 0.48%, respectively (Xu et al., 2008).

These compounds are purported to reflect the therapeutic 
activities of AP owing to their significantly high amount. For 
this reason, several attempts have been undertaken by previous 
researchers to try to isolate and purify individual compounds for 
further exploration. For example, Chen et al. (2006) have reported 
successful isolations of 14 diterpenoids from AP using silica 
gel, Sephadex LH-20, ODS column chromatography, and high-
performance liquid chromatography (HPLC). But the authors 
did not report any bioactivity of the isolated compounds. In 
another attempt, Wu et al. (2008) have successfully isolated 32 
compounds including 14-deoxy-11,12-dihydroandrographolide, 
deoxyandrographolide, and neoandrographolide at high yield. 
After further testing, the author reported that 14-deoxy-11,12-
dihydroandrographolide exerts potential as a vasorelaxation agent 
that is important in the management of hypertension. In all reports, 
the goal of isolation is to obtain a high purity compound. This is 
crucial because studies conducted on the high purity compound 
are more reflective toward the plant’s bioactivities. This is also a 
critical part of the quality control of herbal medicines. Table 1 lists 
the studies that have attempted the isolation of phytochemicals 
from AP.

In the arena of cancer research, AP has become one of the 
most studied herbal candidates for the treatment of several cancer 
malignancies including PCa. However, for MetS, the application 
of AP as one of the potential treatment candidates is still scarce. 
Perhaps, the disease itself is still not yet fully understood, which 
hinders this undertaking. Nevertheless, it has been agreed that 
MetS can be definitively described by the presence of at least 
three of the following criteria: (1) abdominal adiposity, (2) 
hyperglycemia, (3) hypertension, (4) high triglyceride, and (5) low 
HDL-C (Huang, 2009). In view of this understanding, AP could 
be directed to target these components individually to fight MetS.

When considering both diseases as unlinked illnesses, 
the role of AP as a potential mediator could be conferred with 
some degree of certainty based on reported literature. AP, through 

its isolated major diterpenoids, has been found to effectively 
inhibit the growth and progression of PCa cells. Geethangili et al. 
(2008) successfully isolated nine compounds from the aerial part 
of AP. When tested on a panel of cancer cell lines, almost all 
isolates exerted a prominent toxicity profile on Jurkat, PC-3, and 
Colon 205, except for HepG2. In another report, andrographolide 
was discovered to interfere with IL-6 signaling in both androgen-
dependent and castration-resistant PCa cells, further inhibiting 
their progression (Chun et al., 2010). In an animal model, 
andrographolide was implicated in the decrease of tumor volume, 
MMP-11 expression, and blood vessel formation at the tumor 
mass (Forestier-Román et al., 2019).

In terms of MetS, AP has been reported to ameliorate 
hyperglycemia through inhibition of α-glucosidase activity by 
andrographolide and several of its derivative (Dai et al., 2006), 
sensitization of the cell toward insulin by deoxyandrographolide 
(Arha et al., 2015), and functional protection of insulin-producing 
cells by a modified compound, andrographolide-lipoic acid 
conjugate (Zhang et al., 2009). Apart from that, andrographolide 
has been observed to effectively impede the obese manifestation 
by inhibiting lipid accumulation and improving serum lipid 
profile in high-fat diet-induced obese mice (Ding et al., 2014). 
The hypertensive animal model has also been reported to present 
with normal blood status after administration with 14-deoxy-
11,12,dihydroandrographolide (Yoopan et al., 2007).

However, when taking both diseases as a connected 
illness, there has been no report on the role of AP as a potential 
therapeutic agent. But, by understanding the relationship between 
the two diseases, the putative therapeutic target of AP could be 
structured based on literary reports with a prudent consideration 
of the possible limitations. As such, Table 2 presents the list of 
potential targets of AP and some of its isolates in the management 
of MetS–PCa codisease based on the evidence laid out by previous 
researchers. But, based on literature studies, a lot of the reports 
were conducted using andrographolide as the focal point. Studies 
using isolates such as neoandrographolide, deoxyandrographolide, 
and dihydroandrographolide are reported much less frequently.

Enhancing bioavailability
The curative action of AP and its isolates can only be 

achieved when it can be successfully delivered to the targeted 

Table 1. Several attempts by previous researchers in the isolation of phytochemical constituents from AP.

Source Method Isolated compound

(Harjotaruno et al., 2007) AP extraction using methanol > partitioned with ethyl acetate > silica 
column chromatography

Andrographolide

(Kulyal et al., 2010) AP extraction using 95% ethanol > fractioned into chloroform and methanol 
> methanol fraction was subjected to silica gel column chromatography with 
methanol (1.5%–21%) in chloroform > repeated column chromatography for 
purification

Andrographolide, 14-deoxy-11,12-didehydroandrographolide, 
14-deoxyandrographolide, 3,14-dideoxyandrographolide, 14-deoxy-
11-oxoandrographolide, 14-deoxy-12-hydroxyandrographolide, 
neoandrographolide, andrographiside, and 14-deoxyandrographiside

(Nugroho et al., 2014) AP extraction using 90% ethanol > fractionated at 1:10 (extraction-hexane) Andrographolide-rich fraction

(Syukri et al., 2016) AP extraction using ethanol > partitioned with ethyl acetate > column 
chromatography using methanol : chloroform (1:9)

Andrographolide

(Sarkar et al., 2019) AP extraction using 95% methanol > silica gel (100–200 mesh) column 
chromatography > elution with petroleum ether-chloroform (1:1 and 1:4) 
and chloroform-methanol mixture with gradually increasing polarity > 
crystallization

14-Deoxy-11,12-didehydroandrographolide, andrographolide, and 
neoandrographolide

(Villedieu-Percheron 
et al., 2019)

AP extraction using 100% methanol > flash chromatography over silica gel 
with elution gradient of methanol (3%–15%) in chloroform.

Andrographolide, dihydroandrographolide, and neoandrographiside
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Table 2. Putative therapeutic target of AP in MetS–PCa codisease based on reported studies.

MetS–PCa pathology Source Compound Mechanism of action Limitation

TNF- α

Highly expressed by the 
adipose tissue leading to 
enhanced proliferation of 
PCa.

(Qin et al., 2006) Andrographolide Reduction TNF-a at mRNA level.

Reduced production of TNF-a proteins in a concentration-
dependent manner.

The experiment was conducted 
in murine peritoneal 
macrophages.

(Thakur et al., 
2014)

Andrographolide Both samples exert significant effect: blood TNF-α 
expressions in stressed rats were dose-dependently lowered by 
daily treatments.

Rats in the study did not bear 
prostate tumors.

(Amaning 
Danquah et al., 
2020)

Andrographolide In the cirrhotic lung, the TNF-α was highly expressed.

Treatment with andrographolide significantly decreased the 
serum concentration of TNF-α.

Rats in the study did not bear 
prostate tumors.

(Roy et al., 2010) 14-Deoxyandrographolide In vitro treatment of hepatocytes with this compound 
desensitizes the response of the cells toward TNF-α.

The study was conducted on a 
normal liver cell with the goal to 
inhibit cell death.

IL-6

Autocrine and paracrine 
activity of IL-6 stimulate PCa 
cell growth.

(Chun et al., 2010) Andrographolide The compound suppresses both IL-6 autocrine loop- and 
paracrine loop-induced cell signaling.

Mice studied did not present 
with the minimum criteria of 
MetS.

(Zou et al., 2016) AP extract standardized 
at 1% mixture of 
andrographolide and 
dehydroandrographolide

Administration significantly reduces the excessive production 
of cytokines and chemokines including IL-6 in a dose-
dependent manner.

Mice in the study did not present 
with minimum criteria MetS and 
prostate tumor.

(Al Batran et al., 
2014)

Andrographolide Treatment on rabbit at two different doses (10 and 20 mg/kg) 
exhibited a significant reduction in IL-6 level.

Secretion of the IL-6 was not 
confirmed to originate from 
adipocytes, and the rabbit did not 
bear prostate tumor.

(Liu et al., 2008) Andrograpanin At 1.5 μM, andrograpanin significantly inhibited the 
expression of IL-6 from LPS-induced macrophage cells.

Almost complete inhibition of IL-6 was noted at 90 μM.

Origin of IL-6 was not from 
adipocyte or PCa cell, and the 
animal did not bear prostate 
tumor.

Leptin

Long-term exposure 
to elevated leptin from 
adipocyte can enhance 
the growth PCa cell lines 
(LNCaP, DU145, and PC-3). 
Leptin can activate cascades 
involved in cell survival 
particularly through the 
JAK2/STAT and PI3K/AKT 
pathways.

(Zhou et al., 2010) Andrographolide Andrographolide was able to significantly suppress STAT3 
phosphorylation and subsequent nuclear translocation.

Achieved through suppression of JAK1/2 and interaction 
between STAT3 and gp130.

STAT3 suppression by andrographolide enhances the 
sensitivity of the cancer cells to doxorubicin.

The study was not conducted on 
PCa cells.

(Hsieh et al., 
2015)

Deoxyandrographolide Deoxyandrographolide induces autophagy cell death by 
inhibiting the PI3K/AKT/mTOR pathway.

The study was not conducted on 
PCa cells.

(Li et al., 2015) Andrographolide Andrographolide inhibited hypoxia protein, HIF-1, in breast 
cancer cells by targeting the upstream PI3K/AKT pathway.

The study was not conducted on 
PCa cells.

miR-301a

Hyperglycemia has been 
known to increase the 
expression of miR-301a in 
PCa cells, promoting cell 
cycle transition, proliferation, 
and invasion/migration of 
PCa cells by interfering with 
p21 and Smad4 expression 
(Li et al., 2018).

(Yan et al., 2012) Andrographolide Andrographolide treatment caused a dose-dependent increase 
in the expression of cell cycle inhibitors p21 and p27 in 
rheumatoid arthritis fibroblast-like synoviocytes (RAFLSs).

The study was not conducted on 
PCa cells.

(Shi et al., 2008) Andrographolide Cell cycle arrest at the G1/S phase was observed in Lovo cells 
after treatment with andrographolide at concentrations of 0–30 
μM.

The expression of CDK inhibitor, p21, was significantly 
increased.

The study was not conducted on 
PCa cells.

(Li et al., 2020) Andrographolide Treatment of human alveolar epithelial cells (AECs) with 
andrographolide interfered with Smad4 nuclear translocation, 
repressing gene expression required for cell growth.

The study was not conducted on 
cancer cells.

EMT

Hyperglycemia could 
modulate EMT in prostate 
tumors.

(Li et al., 2020) Andrographolide Andro inhibited TGF-β1-induced EMT and EMT-related 
transcription factors in alveolar epithelial A549 cells.

The test was not conducted on 
PCa cells.

(Liu et al., 2019) Deoxyandrographolide Deoxyandrographolide treatment effectively rescued the EMT 
of osteosarcoma cells.

The test was not conducted on 
PCa cells.

(Kayastha et al., 
2015)

Andrographolide EMT markers, α-SMA, fibronectin, and collagen IV, were 
significantly decreased after treatment with andrographolide in 
lens epithelial cells (LECs).

Andrographolide inhibits avert EMT by inhibiting the 
mitogen-activated protein kinase (MAPK) signaling pathway.

The study was not conducted on 
cancer cells.

(Continued)
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site. But its low bioavailability has been a major challenge in 
drug delivery research. The bioavailability of AP was described 
to be only 2.67% and structural modification quickly takes place 
in duodenum and jejunum. Specifically, for andrographolide, low 
bioavailability is caused by high lipophilicity, low water solubility, 
and efflux by P-glycoprotein (Pandey and Rao, 2018). A low 
circulating concentration puts a limit on the therapeutic actions of 
the drug at the disease location.

One of the strategies that have been utilized is by 
incorporating the absorption enhancer. Andrographolide integrated 
into polymer solid dispersion (SD) formulation was reported to 
elevate its Cmax/dose and the area under the curve (AUC)/dose 
by 3.7-fold and 3.0-fold, respectively (Yen et al., 2020). An SD 
utilizing silica, SiO2, was also fabricated by another researcher. In 
vitro testing revealed that the SD enhances the drug by improving 
its solubility and drug release profile (Zhang et al., 2016).

The strategy of using nanoparticlse has also been 
employed. There are several nanoparticle formulations that have 
been developed with fitting criteria to be used as a stable drug 
carrier such as liposome, solid-lipid nanoparticles (SLN), and 
nanostructured lipid carrier. Andrographolide-loaded herbosome 

incorporating soya-phosphatidylcholine has been formulated 
by Jain et al. (2013) in an effort to deliver its hepatoprotective 
properties. The authors reported better liver function and drug 
absorption in the rat model using the nanoparticle as compared to 
administration with free andrographolide. Graverini et al. (2018) 
have also attempted to deliver andrographolide to the brain as a 
strategy to treat neurodegenerative complications. However, the 
blood–brain barrier posed limited passage of the compound. By 
using SLN as the carrier, the compound was able to overcome the 
barrier. Semipurified andrographolide formulated into nano-phyto 
vesicle was also able to increase its bioavailability (Verma et al., 
2020). To further enhance cellular uptake, the nanoparticles could 
also be improved by integrating the structure with cell-penetrating 
peptide (Chen et al., 2012b).

CONCLUSION
In conclusion, the link between MetS and PCa is mediated 

by a number of mechanisms including leptin, TNF-α, IL-6, miR-
301a, EMT, and MMPs. AP and its isolates have great potential 
to intervene in these linkages. Previous studies have presented 
proof of concept on the capacity of AP and some of its isolates in 

MetS–PCa pathology Source Compound Mechanism of action Limitation

E-cadherin

In hyperglycemic condition, 
the level of E-cadherin in 
PCa cells is reduced. This 
leads to EMT of the cancer 
cells that eventually promote 
metastasis and invasion.

(Hsieh et al., 
2017)

Dehydroandrographolide Dehydroandrographolide significantly induced the expression 
of E-cadherin in human oral cancer cell lines (SCC9).

EMT-related proteins, including Vimentin, Zo-1, Zeb-1, 
Twist-1, Snail, Slug, N-cadherin, and β-cadherin, were 
decreased.

The test was not conducted on 
PCa cells and element of MetS 
was not incorporated.

(Xia et al., 2019) Andrographolide In the lung tissue of the mouse model, exposure to cigarette 
smoke extract (CSE) decreased the level of E-cadherin.

Andrographolide blocked the decreases of E-cadherin levels 
induced by CSE.

The animal model did not confer 
MetS and the target was not done 
in tumor cells.

(Liu et al., 2017) Andrographolide Andrographolide sustained the expression of E-cadherin in 
human osteosarcoma (bone cancer) cell, U-2 OS.

The treatment inhibits EMT, metastasis, and invasion of the 
cancer cell.

MetS microenvironment was not 
introduced and the study was not 
done on PCa cells.

TGF-β1

Hyperglycemia activates 
the TGF-β1 signaling that 
eventually causes a reduction 
in E-cadherin.

(Lin et al., 2018) Andrographolide Andrographolide ameliorated both liver inflammation and 
fibrosis through inhibiting the activation of the TLR4/NF-κB 
and TGF-β1/Smad2 signaling pathways in hepatic stellate cells 
(HSC).

The study was not conducted in 
MetS setting, and test on PCa 
cells was not included.

(Lee et al., 2010) Andrographolide 
and 14-deoxy-11,12-
didehydroandrographolide

With high glucose treatment (25 mM), the secreted TGF-β 
level was upregulated to 2.5 times in murine kidney cell line, 
MES 13.

Andrographolide and 14-deoxy-11,12-
didehydroandrographolide showed significant effects in 
reducing TGF-β levels secreted.

14-Deoxy-11,12-didehydroandrographolide is more potent.

The study was not conducted on 
cancer cells.

MMPs

At increased glucose 
concentration, increased gene 
expression levels of MMPs 
have been detected which 
promotes PCa progression 
and metastasis.

(Zhang et al., 
2017)

Andrographolide Antiproliferation effects of andrographolide on the human 
colorectal adenocarcinoma, SW620, cells were associated with 
the inhibition of MMP-9 signaling activation.

Study did not incorporate MetS 
condition and without PCa cells.

(Shi et al., 2009) Andrographolide Andrographolide inhibited dose-dependently the migration 
and invasion of metastatic human colorectal adenocarcinoma, 
Lovo cells.

The treatment diminished the activity and the mRNA and 
protein levels of MMP-7.

Study did not incorporate MetS 
condition and without PCa cells.

(Chao et al., 2013) Andrographolide Andrographolide dose-dependently inhibited TPA-induced 
MMP-9 protein expression, enzyme activity, migration, and 
invasion in MCF-7 breast cancer cells.

Study did not incorporate MetS 
condition and without PCa cells.

Idris and Hasham/ Journal of Applied Pharmaceutical Science 11 (08); 2021: 167-177173



targeting mechanisms involved in the MetS–PCa relationship. In 
particular, andrographolide has been reported repeatedly to have 
inhibitory capability in all relationships discussed. This review is 
hoped to open a new window of opportunity for AP as one of the 
treatment approaches for MetS–PCa codisease.
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