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ABSTRACT 
Breast cancer is one of the most diagnosed cancers in women; the number of cases continues to rise. The high 
prevalence and increased incidence need more attention in developing effective therapy. Current passive therapy has 
several drawbacks that have not yet been resolved. Thus, an alternative and preventive therapy for cancer is needed 
by utilizing vaccines. Immunoinformatics approach is one of the promising methods predicting epitopes in vaccine 
research. This approach could accelerate the initial study process of vaccine development and reduce research costs. 
Epitope conservancy and vaccine coverage are important parameters in vaccine research due to addressing the variability 
and diversity of cancer genomics. This study will be carried out on the multiepitope characterization of potential T 
cells against the protein mechanism in breast cancer. Proteins used in this study are Mucin-4, Phosphatase And Tensin 
Homolog, and Receptor tyrosine-protein kinase erbB-2. CTL epitopes, antigenicity, immunogenicity, allergenicity, 
and toxicity were predicted for the peptide vaccine. Immunoinformatics analysis generates a multiepitope sequence 
consisting of seven epitopes: DPVALVAPF, SVAYRLGTL, SQINTLNTL, RFRELVSEF, VTSANIQEF, RPRFRELVS, 
and MYFEFPQPL by AAY linker. The docking and molecular dynamics analyses were conducted to confirm the 
interactions between the multiepitope vaccine molecule and TLR-4-MD. The multiepitope vaccine construct can be an 
appropriate choice for further experiments.

INTRODUCTION 

Cancer is a disease caused by abnormal cells in the body's 
tissues that grow and develop rapidly and become uncontrolled. 
This disease is known as one of the world’s major public health 
problems causing morbidity and mortality, and the number of 
cancer cases reaches more than 19 million (Ferlay et al., 2020). 
In 2012, the most diagnosed cancer in women was breast cancer 
(43.3%) and cervical cancer (14%) (Tao et al., 2015). Compared 
to 2012, the number of cases increased by 24% in 2018. This 
number is expected to continue to rise (Bray et al., 2018). The 
high prevalence and increased incidence made urgent research for 
effective therapies for cancer (Ghoncheh et al., 2016; Parvizpour 
et al., 2018). 

Currently, treatment of some types of breast cancer was 
conducted using monoclonal antibodies against HER2 (Atapour 
et al., 2020). The limitation of passive therapy such as high cost, 
treatment duration, and the possibility of emerging immunological 
tolerance has not been resolved (Pallerla et al., 2021). As an 
alternative to monoclonal antibody therapy with a limited clinical 
benefit over time, vaccines stimulating immune response toward 
tumor cells are one of the therapeutic strategies as a potential 
approach for cancer therapy. Active immunotherapy promoted by 
the tumor-associated antigen vaccine or tumor-specific antigen 
will increase preexisting resistance to antigens and prolonged 
activation of the immune system (Benedetti et al., 2017).

Promising vaccine development methods in the 
genomic era are by using the reverse vaccinology method using 
bioinformatics and immunoinformatics approach. This reverse 
vaccinology approach predicts epitopes, an antigen determinant 
that has an important role in immunity, and its interaction 
toward human leukocyte antigen (HLA). Through this approach, 
vaccine development can be carried out based on the target 
sequence and genomic data without culturing the target organism 
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(Kanampalliwar et al., 2013). Also, this approach was able to 
accelerate the initial study process of vaccine development and 
reduce research costs. The predicted protein from this in silico 
study can then be synthesized for testing on test animals (Khan 
et al., 2006; Serruto and Rappuoli, 2006). 

Cancer prevalence, incidence, and mortality between 
diverse ethnic populations are very different. The causes for 
these differences are complex, including intrinsic factors 
(genetic variation) and extrinsic factors (social, economic, and 
geographical) (Khan et al., 2017). Understanding cancer risk 
and the underlying cause is essential in developing research and 
health care practices that could work for various ethnicities and 
populations. Therefore, in the vaccine development process, it is 
important to pay attention to vaccine coverage so that vaccines can 
cover various ethnicities. 

Some proteins are overexpressed in cancer patients and 
associated with enhanced tumor growth. These overexpressed 
proteins are the subject of active immunotherapy in vaccination. 
In this study, we use protein Receptor tyrosine-protein kinase 
erbB-2 (ERBB2), Mucin-4 (MUC4), and Phosphatase And 
Tensin Homolog (PTEN) for vaccine development. ERBB2 is 
a gene encoding growth factor receptor that plays a significant 
role in breast cancer (Ludovini et al., 2008). ERBB2 is often 
overexpressed in breast cancer and has been considered as a 
potential target in cancer therapeutics (Chentoufi et al., 2009). 
MUC4 is membrane-bound mucin expressed in several epithelial 
malignancies. Mucin is normally expressed by epithelial cells 
as a barrier and contributes to lubrication. MUC4 is mucin 
that is apparently specific to tumor tissue. Recent studies 
showed that MUC4 differentially expressed in breast cancer 
cells appears to correlate with prognosis (Hattrup and Gendler, 
2008). PTEN protein is involved in the regulation of several 
crucial cell functions. Partial loss of PTEN function is enough 
to promote tumorigenesis and accelerate cancer progression 
(Bazzichetto et al., 2019). Mutations in these proteins lead to 
the variability in sequence composition. Conserved sequence 
regions are critical to addressing the diversity of the proteins 
(Khan et al., 2008). 

This study will be carried out on multiepitope 
characterization of potential T cells against protein mechanisms 
in breast cancer, diversity analysis of protein sequences related to 
immunity, effects of antigenic variation, and sequence similarity 
to the immune response, HLA. The urgency of this study is based 
on the high incidence of breast cancer in Indonesia and breast 
cancer drug resistance. Another alternative is needed to prevent 
and treat breast cancer by utilization of vaccines.

METHODS
The methodology used in this study is summarized in a 

diagram (Fig. 1).

Data retrieval
ERBB2 (P04626), PTEN (P60484), and MUC4 

(Q99102) protein sequences were retrieved from the UniProt 
web server (https://www.uniprot.org/) (Bateman, 2019). Mutation 
data and ERBB2, PTEN, and MUC4 protein sequences were 
downloaded from the COSMIC website (https://cancer.sanger.
ac.uk/cosmic) (Tate et al., 2019). The mutation data downloaded 

are the missense type mutation data. The mutations were induced 
in the retrieved sequence by BioEdit (Hall, 1999).

Sequence processing and diversity analysis
After obtaining a sequence with a mutation according to 

COSMIC data, the sequence is then processed through the JalView 
software to delete the twin sequences so that the sequences 
obtained are unique (Waterhouse et al., 2009). The sequences were 
then aligned using the ClustalX software (Larkin et al., 2007). 
Mutation in this protein appears to be associated with developing 
breast cancer. As the gene has a high mutation number based on 
the database, it is important to search regions of protein which are 
conserved. The sequences were then analyzed for entropy using 
the AVANA software to determine the conserved region. 

Prediction of the epitope and its characteristics
T-cell epitope prediction was carried out on the 

NetCTL 1.2 page (https://services.healthtech.dtu.dk/service.
php?NetCTL-1.2) based on 12 HLA class I supertypes (A1, A2, 
A3, A24, B7, B8, B27, B44, B58, B62, C1, and C4) (Larsen et al., 

Figure 1. The methodology of the research.
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2007). The prediction results with NetCTL 1.2 will provide data 
on the affinity value of HLA class I and C terminal binding, the 
value of transport effectiveness via TAP, and the total affinity 
value (Grifoni et al., 2020). The epitope chosen is an epitope with 
a value above 0.75. Epitopes obtained from the NetCTL page 
predicted their immunogenicity characteristics through the IEDB 
Immunogenicity page (http://tools.iedb.org/immunogenicity/) 
(Calis et al., 2013). 

Immunogenicity and antigenicity are important parameters 
in vaccine design. Therefore, epitopes that have been obtained from 
the predictions via the NetCTL 1.2 were submitted to the IEDB 
immunogenicity page. Epitopes with positive immunogenicity 
values   were further predicted for their antigenicity characteristics 
through the VaxiJen 2.0 page (http://www.ddg-pharmfac.net/vaxijen/
VaxiJen/VaxiJen.html) (Doytchinova and Flower, 2007), allergenic 
characteristics on the AllerTOP page (https: //www.ddg-pharmfac.
net/AllerTOP/) (Dimitrov et al., 2013), and the characteristics of the 
toxicity on the ToxinPred page (http://www.imtech.res.in/raghava/
toxinpred/) (Gupta et al., 2013). VaxiJen and AllerTOP, respectively, 
identify the antigenicity and allergenicity of epitopes based on 
physicochemical properties of proteins (Dimitrov et al., 2013; 
Doytchinova and Flower, 2007). In the antigenicity prediction test 
using VaxiJen 2.0, 0.5 was kept as a threshold score and epitopes 
with a higher score were considered for further analysis. Toxicity 
prediction by ToxinPred was based on support vector machine from 
toxic peptides dataset (Joshi et al., 2020). ToxinPred prediction 
consists of two steps, toxicity prediction and analog generation and 
prediction (Gupta et al., 2013). Epitopes selected as candidates are 
epitopes with an antigenicity value of more than 0.5 and nontoxic 
and nonallergen characteristics.

Epitope population coverage prediction
The coverage of the CTL epitope population is predicted 

via the IEDB Population Coverage page with default parameters, 
based on Major Histocompatibility Complex (MHC) binding 
restriction data (http://tools.iedb.org/population/). This dataset 
consists of frequencies for 115 countries, 21 ethnicities, and 16 
geographical areas. Each CTL epitope is inserted to that page along 
with the HLA type data that binds to the epitope. After that, select 
the area and population to predicts epitope population coverage. 
The areas selected are world, East Asia, Northeast Asia, South 
Asia, Southeast Asia, Southwest Asia, Europe, Central Africa, 
East Africa, North Africa, South Africa, West Africa, West Indies, 
Central America, North America, South America, and Oceania 
(Bui et al., 2006).

Multiepitope sequence construction
Each of the selected epitopes was then linked 

with AAY linker from the study by Klein et al. (2014) and 
a HEYGAEALERAG motif was added to enhance epitope 
presentation (Tani et al., 2000).

Epitope modeling
3D modeling of the putative multiepitope vaccine 

was conducted through Swiss-PdbViewer/DeepView (Guex 
and Peitsch, 1997). The residues of the structure can be seen 
through the Control Panel menu. The attachment of the vaccine 
structure to the template is done through the Magic Fit menu. 

The adhered residues can be seen through the alignment menu. 
Visualization of the tertiary structure of the adhered vaccine is 
done by removing the tertiary structure of the template so that the 
tertiary structure of the vaccine can be seen. The improvement 
of the tertiary structure of the vaccine is carried out in two 
stages. The first step is to improve the structure of the vaccine 
in the DeepView viewer by fixing the overlapping residues, 
whereas the second stage is through the Swiss-Model server by 
sending the structure of each vaccine that has been upgraded on 
DeepView to the Swiss-Model server in the form of PDB for 
structure optimization, namely, by selecting the Optimize Mode 
menu on the Swiss-Model server.

Validation of tertiary structure
The evaluation of tertiary structure of putative 

multiepitope vaccine was done using Ramachandran plot in 
DeepView program. Some parameters were used to evaluate 
the quality of 3D model of putative multiepitope such as 
MolProbability score, Ramachandran favored, Ramachandran 
outliner, rotamer outliner value, clash score, C beta deviation, bad 
bonds, and bad angels (Johansson et al., 2012).

Molecular docking

The initial stage of the molecular docking simulation 
is 3D modeling of the selected multiepitope sequence. 3D 
modeling is carried out on the SWISS-MODEL page (https://
swissmodel.expasy.org) and assessment for the 3D structure using 
Ramachandran plot (Gopalakrishnan et al., 2007; Waterhouse 
et al., 2018). The macromolecule TLR4 was downloaded from 
the Protein Data Bank (https://www.rcsb.org/) with PDB ID 
4R7D (Loyau et al., 2015). Molecular docking was conducted 
using protein-protein docking in Rosetta web server (https://rosie.
graylab.jhu.edu/docking2) (Chaudhury et al., 2011; Lyskov and 
Gray, 2008; Lyskov et al., 2013). PyMOL software was used for 
visualization and amino acid interaction evaluation for molecular 
docking results (Delano, 2002).

Molecular dynamic simulation
The molecular dynamic simulation was executed on 

the LARMD website (http://chemyang.ccnu.edu.cn/ccb/server/
LARMD) (Yang et al., 2020). LARMD is developed based 
on Amber16 software (Case et al., 2016). Molecular dynamic 
simulation has workflow as follows: preparation complex protein-
ligand, force field generation, minimization, equilibration, 
production, and result analysis root-mean-square deviation 
[RMSD], root-mean-square fluctuation [RMSF], B-factor, fraction 
of native contact, and radius of gyration [Rg] (Best et al., 2013; 
Chovancova et al., 2012; Grant et al., 2006; McGibbon et al., 
2015).

RESULTS AND DISCUSSION

Sequence processing
Bioinformatics and immunoinformatics have been 

supporting large amounts of biological data in vaccine research. 
Several tools in this approach have been developed to process 
sequence and analyze immunological data (Raman et al., 2014). 
JalView is used to remove identical sequences and generate 
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unique sequences. These unique sequences are aligned using 
ClustalX. Alignment files are converted into * .taln files by 
BioEdit. The processed sequence then being analyzed its entropy 
using AVANA, a software based on the Shannon Entropy concept. 
Shannon sequence entropy analysis measures the conservation 
level and variability of the sequence of certain lengths. Conserved 
peptides with lower entropy scores are more conserved and less 
random than peptides with higher entropy (Li et al., 2019). The 
conserved 9-mer peptides from AVANA are then analyzed further 
for the epitope prediction (Khan et al., 2006).

Prediction of T-cell epitopes
The conserved peptides are used for T cell putative 

epitopes identification using an immunoinformatics approach. 
Putative epitopes chosen for further analysis should be antigenic 
and immunogenic. Antigenicity is the ability of a peptide to bind 
and interact specifically with the functional binding site of an 
antibody. Immunogenicity refers to the ability of the peptide to 
induce an immune response (Choudhuri, 2014).

One of the important stages in peptide-based vaccine 
development is the prediction of antigenic epitopes that potentially 
bind to different HLA alleles. Recognition of putative epitopes by 
T-cell receptor (TCR) will induce an immune response. Putative 
epitopes that are recognized by TCR will be presented on the 
surface of Antigen Presenting Cells bound to MHC. There are 
two types of MHC: MHC Class I (HLA class I) and MHC Class 
II (HLA class II). MHC or HLA molecules are polymorphic and 
thousands of HLA are identified. Therefore, in putative epitope 
vaccine design, selection of putative epitopes that bind to a larger 
number of HLA supertypes could result in increased population 
coverage (Patronov and Doytchinova, 2013).

The prediction of T-cell putative epitopes was 
conducted by data-driven using NetCTL-1.2 tools for CTL (HLA 
I) putative epitopes. The NetCTL-1.2 tools integrate prediction 
of peptide MHC Class I binding, proteasomal C terminal 
cleavage, and TAP transport efficiency for 12 HLA supertypes 
(Larsen et al., 2007). The peptide that has a proteasomal 
recognition site is not favorable as a putative epitope because 
it will undergo degradation during processing. TAP binding and 
transport efficiency are important because the peptides must be 
transported by TAP to be presented on MHC Class I. The higher 
the score, the higher the possibility for the putative epitopes to be 
transported by TAP (Bhasin, 2004). 

Epitopes are obtained from the NetCTL server and then its 
antigenicity is evaluated using VaxiJen and immunogenicity using 
IEDB. Antigenicity and immunogenicity are important parameters 
for vaccine development to ensure that the peptide sequence could 
induce an immune response (Kalita et al., 2020). Besides that, the 
peptide sequence has to be nontoxic and nonallergenic (Dimitrov 
et al., 2013). 

The nonantigenic putative epitopes were removed, 
subjected to predict its toxicity and allergenicity. Toxic and 
allergenic putative epitopes were removed. The results of the 
CTL epitope analysis, antigenicity, and immunogenicity of 
the three proteins are summarized in Table 1. The analysis was 
also conducted for an epitope-based vaccine which has been 
evaluated through the clinical phase, such as E75 and GP2 vaccine 
with amino acid composition, respectively, KIFGSLAFL and 
IISAVVGIL. Both of these vaccines induce CD8+ CTL response 
(Brown et al., 2020).

Despite the fact that extensive research has been done 
in epitope-based peptide-vaccine development, the vaccine has 
not yet been approved for human use. This is due to the low 
immunogenicity of the simple peptide vaccine and its HLA-
restricted characteristics. Hence, it is necessary to construct a 
multiepitope vaccine targeting different HLAs. In addition, the 
utilization of adjuvants or certain motifs is used to enhance the 
immunogenicity of the vaccine (Purcell et al., 2007; Topuzoğullari 
et al., 2020). Based on the results of the CTL epitope prediction 
in Table 1, a multiepitope sequence is constructed as a vaccine 
candidate, with an arrangement as shown in Figure 2. Each 
epitope is connected to an AAY linker and added to a motif 
HEYGAEALERAG at the N end to enhance epitope presentation 

Table 1. Putative epitope prediction results.

Protein Epitope CTL HLA supertypes Immunogenicity Antigenicity

ERBB2

RFRELVSEF B8, B62, and B39 0.06449 1,1717

VTSANIQEF A1, A24, B58, and B62 0,06539 0,7462

RPRFRELVS B7 and B8 0.29401 1,3619

PTEN MYFEFPQPL A24 and B39 0,1381 1,285

MUC4

DPVALVAPF A1 and B39 0,10737 0,92

SVAYRLGTL B39 and B58 0,10022 0,8354

SQINTLNTL A1, B27, and B58 0,08127 1,4349

Positive control KIFGSLAFL 0.00198 Nonantigen

IISAVVGIL 0.17109 Nonantigen

Figure 2. Multiepitope vaccine constructs.
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(Safavi et al., 2019). The motif and epitopes were linked by the 
EAAAK linker. 

Epitope population coverage prediction
MHC or HLA molecules are polymorphic and more than 

thousands of HLA are identified. In humans, more than 225 HLA 
Class I and 980 HLA Class II alleles have been identified. The 
regional polymorphisms encoding the peptide-binding pathways 
of the HLA molecule give MHC molecules varying binding 
specificities. In addition, the frequency of allele variants varies 
among different ethnicities. It would be complex if different 
epitopes were produced to cover different ethnicities or regions 
(Sakib et al., 2014). Therefore, it is important to select a putative 
epitope with a broad and maximal population coverage in addition 
to the ability to bind HLA.

IEDB population coverage tools generate a prediction 
of population coverage from the vaccine construct for all 
regions available and the world, as presented in Figure 3. From 
the graphic, the vaccine constructs showed good percentage 
coverage for all regions/populations available in IEDB 
webserver. Maximum coverage (83.72%) was found in the 
population of Oceania. Population coverage from the world 
population was 76.59%. All of the percentage coverage was 
above 55%; only one population, Central America population, 
has 2.18% population coverage. The small population coverage 
was in the Central America region because the Central 
America region provided scarce information from very specific 
populations (Michel-Todó et al., 2019).

3D molecular prediction of putative multiepitope vaccine
The homology approach was used in research for the 

tertiary structure predictions of vaccines. The tertiary structure 
prediction of a protein with homology modeling can be done in 
terms of the similarity of the sequence between the protein and the 
database protein which is at least 20% (Bourne, 2003). The results 
of the homology modeling sequence of the multiepitope vaccine 
with the protein in the database show that it is greater than 50%, 
so the prediction of the vaccine structure can be done using the 
homology modeling method.

Visualization of the tertiary structure of the reverse 
immunization vaccine is shown in Figure 4A. The vaccine design 
has similar sequences to the TLR4 proteins, which are expected 
to have the same function and trigger an immune response as in 
TLR4. Improvements to the tertiary structure of vaccines need to 
be done to repair residues that overlap each other. Proteins that 
contain the same amino acid structure as the template do not 
necessarily fold (folding) proteins in their tertiary form because of 
the influence of interactions between amino acids with side amino 
acids or neighboring amino acids. The 3D structure validation is 
carried out with the Ramachandran plot as shown in Figure 4B. 

The glycine plot can be in the disallowed region because 
glycine does not have side chains, so the angle φ (phi) and angle ψ 
(psi) are infinite. The number of residual plots other than glycine 
in the restricted area indicates the structural quality of the protein. 
If the amount exceeds 15% of the total protein residue, the protein 
quality is poor (Cherkasov, 2005). The amount of nonglycine 
residue in the disallowed region on the Ramachandran plot for 

Figure 3. Population coverage of multiepitope vaccine.
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the vaccine structure predicted by First Approach Mode and 
Optimize Mode 0.0% with a clash score of 1.47 is much smaller 
than 15% of the total residue, which is around 2%–2.5%. Thus, the 
multiepitope structure of the vaccine produced is of good quality.

The evaluation of the tertiary structure of the vaccine 
was conducted by looking at the overlapped residues and 
Ramachandran plot analysis of the vaccine structure integrated 
with the DeepView (Fig. 4). Certain combinations of φ (phi) and ψ 
(psi) are not allowed because they will produce a steric hindrance or 
an overlap between the atoms in the protein. Ramachandran plots 
are used to check and adjust the conformational measurements of 
a protein model. The Ramachandran plot has an area marked by a 
blue line around it, which is the coordinate area for the secondary 
structure of the protein. This area is the allowed region, where 
the number of amino acids is plotted in two regions, namely, the 
yellow area, namely, the area sterically permitting the values of φ 
(phi) and ψ (psi), and the blue area, which is the area of maximum 
tolerance. steric strain. Meanwhile, the disallowed region is an 
area outside the allowed region, where residual plots other than 
glycine are not allowed in the area.

Based on Ramachandran plot analysis for 3D modeling 
of putative multiepitope (Fig. 4A), MolProbability score value 
is 1.11; Ramachandran favored value is 96.55%; Ramachandran 
outliner and rotamer outliner value is 0.00%; clash score value is 
1.47; C beta deviation is 1 (A75 Asn); bad bonds are 0/705; and 
bad angels are 5/959 (Arg83, Pro84, Thr51, Asn50, Glu11, Leu43, 
and Ala44) (Fig. 4B).

Molecular docking TLR4 with putative multiepitope vaccine
Molecular docking is one of the fundamental structure-

based techniques in drug design and bioinformatics, which 
predicts the interaction between ligand and protein or protein and 
protein. In immunoinformatics, docking becomes a proper tool to 
solve the problem of binding prediction for proteins that play a 
role in the immune system.

Molecular docking analysis using Rosetta web server 
is a multiscale Monte Carlo-based algorithm that utilized a 
centroid-based, coarse grain stage to identify favorable docking 
poses, and an all-atom refinement stage that optimizes rigid-body 
position and side-chain conformation. RosettaDock has been 
modified to overcome the critical challenge in protein-protein 
docking: binding-induced backbone conformational changes. 
RosettaDock has been applied for antibody-antigen docking 
research (Sivasubramanian et al., 2006, 2007), peptide docking 
and specificity (Chaudhury and Gray, 2009; Raveh et al., 2010) 

multi-body (Bocik et al., 2011) and symmetric-docking (Andre 
et al., 2008).

Generation of models ensemble in the server was 
conducted by 1,000 independent simulations in local docking 
perturbation run. Molecular docking had been run in the 
GrayLab.  Rosetta-4 daemon and complete in 30 minutes. As 
shown in Figure 5, mostly all models (TLR4 with putative 
multiepitope) have similar conformation except model 3 (Fig. 
5C), model 7 (Fig. 5G), and model 10 (Fig. 5J). From 10 models, 
the best model score is model 1 with a total score of −366.36, 
RMSD value is 18.395, the interface score (I_Sc) value is −3.68, 
and I_rmsd value is 3.049 (Table 2). The quality of docking 
was categorized based on the accuracy of the closest decoy in 
the top five scoring decoys based on CAPRI-defined criteria: 
high (I_rmsd < 1.0 Å), medium (1.0 Å < I_rmsd < 2.0 Å), and 
acceptable (2.0 Å < I_rmsd < 4.0 Å) (Méndez et al., 2003). I_
rmsd or interface rmsd is calculated over all backbone atoms in 
interface residues with an intermolecular distance of at most 4.0 
Å (Chaudhury et al., 2011).

TLR4 has an active binding site as a favorable site of 
the multiepitope vaccine. TLR4 has two main chains such as I and 
J. Chain I represents Fab Hu 15C1 Heavy chain with a sequence 
length of 225 amino acid and no mutation. Chain J represents Fab 
Hu 15C1 Light chain with a sequence length of 214 amino acid 
and no mutation. Active binding sites favorable of multiepitope 
vaccine of TLR4 Chain I are S137, K134, T136, S135, P218, 
E217, V216, R215, G195, T196, and L194 and of Chain J are 
N210, R211, and G212. Amino acid residues in multiepitope that 
have interaction with active binding site in TLR4 are A19, L27, 
V28, A29, P30, F31, A32, A33, Y34, and S35 (Fig. 6). 

Molecular dynamic simulation of TLR4 and putative 
multiepitope vaccine

The result of the molecular dynamic simulation is 
diversity, consisting of RMSD, Rg, Fraction of Native Contacts 
(Q), RMSF, B-factor, principal component analysis (PCA), 
analysis of dynamic cross-correlations, analysis of hydrogen 
bond, and energy calculation.

Molecular dynamics (MD) simulations of single-
molecule and molecular complexes, including unbiased and 
biased MD simulations, are widely applied to achieve accurate 
binding modes, binding energies of drug-receptor interactions, 
drug-target recognition and binding, and allosteric mechanism 
research. MD simulations have been successfully applied in many 
drug discovery researches. The information from the dynamic 
trajectory could be used in determining the relationship between 
protein structure and function. 

RMSD refers to the measure of the average distance 
between the atoms of superimposed structures. Sometimes, 
equalized RMSD plots indicate the equilibrium of the system. 

Based on the RMSD graph shown in Figure 7A, during 
molecular dynamic simulation record per frame time (ps) in X-axis, 
RMSD score overall is stable from 500 ps with a range of RMSD 
0.0820–2.8577 Å. Based on RMSD histogram of the receptor 
shown in Figure 7B, RMSD value range starts from 2.0 to 2.8 Å 
with the highest number in value around 2.5 Å. Overall spectrum 
of RMSD did not show any shifts which explains structure stability 
and strength of vaccine inside the active site pocket.

Figure 4. (A) 3D prediction of putative multiepitope vaccine; (B) Ramachandran 
plot of putative multiepitope vaccine.



Fadilah et al. / Journal of Applied Pharmaceutical Science 11 (06); 2021: 035-045 041

Rg or gyradius is used to characterize the dynamic 
trajectory of flexible systems for molecular systems. The 
calculation of Rg is one of the important indicators used in 
predicting the structural activity of a macromolecule. The Rg is 
influenced by the changes in the folding state of the protein. This 
provides an important probe of the equilibrium unfolding reaction. 
A small Rg score indicates that throughout trajectory the proteins 
were in folded structure. 

Based on the fraction of native contact analysis 
shown in Figure 8A, Q(X) value during molecular dynamic 
simulation per time (ps) was decreased f/rom 0.999999165535 

to 0.945987820625. The Rg plot in Figure 8B shows structural 
activity of a macromolecule during 1,000 time (ps) with a range 
value of 28.2–29.4.

Nonnative contacts have no significant part in the 
mechanism of folding in most cases. Coarse-grained theoretical 
and simulation models of folding support that only native contacts 
are energetically favorable. The fraction of Native Contacts Q(x) 
captured the transition sites of proteins with a folding free energy 
barrier. Q(x) will change with the unfolding of the protein.

RMSF refers to the atomic positional fluctuation. Here, 
the fluctuation of each residue is calculated based on the CA atom 
of them. The residue number in the crystal structure can be got 

Figure 5. Overlapping visualization of 10 best models from molecular docking TLR4 with putative multiepitope vaccine; (A) Model 
1; (B) Model 2; (C) Model 3; (D) Model 4; (E) Model 5; (F) Model 6; (G) Model 7; (H) Model 8; (I) Model 9; (J) Model 10.

Table 2. Docking energy of putative multiepitope vaccine with TLR4.

Model Total score RMSD I_Sc I-rmsd

1 −366.36 18.395 −3.68 3.049

2 −366.218 16.296 −3.716 6.051

3 −366.113 9.616 −3.513 6.075

4 −366.062 18.003 −3.557 5.734

5 −366.045 18.639 −3.794 5.286

6 −366.02 15.219 −3.542 5.584

7 −365.97 6.898 −3.668 4.624

8 −365.837 15.913 −3.207 5.281

9 −365.818 16.54 −3.306 4.464

10 −365.776 15.883 −3.259 5.371
Figure 6. Amino acid interaction of TLR4 with putative multiepitope vaccines.
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from raw data at each residue position. At the bottom and top of 
the graphic, the secondary structure is indicated with colored lines 
(helices as black, strands as gray, and loops as white). During 
the simulation, these helices, strands, and loops are oriented to 
accommodate molecular interactions and ensure that the vaccine 
stays within the active site. Note that larger fluctuations are 
predicted for loop regions.

B-factor, or the temperature factor, is similar to RMSF, 
which is used to describe atomic positional fluctuations, attenuation 
of X-ray scattering, or coherent neutron scattering caused by 
thermal motion. The residue number in the crystal structure can 
be got from raw data at each residue position. Similar to RMSF, 
at the bottom and top of the graphic, the secondary structure is 
indicated with colored lines. Note the larger fluctuations predicted 
for loop regions.

RMSF value of each residue (Fig. 9A) shows a high 
fluctuation in residue position 430–500 and a low fluctuation in 
residue position 1–300. Similar to the RMSF value, the B-factor 
also has a low fluctuation in residue position 1–400 and has a high 
fluctuation in residue position 410–500 (Fig. 9B).

PCA can be utilized to analyze the relationship between 
different structures based on their equivalent residues and the 
protein trajectories. The MD trajectory analysis vignette is used 
to discuss the application of PCA to visualize and compare the 
distribution of experimental structures and MD trajectories 
during the simulation. Studies suggest that 3–5 dimensions are 
sufficient for capturing more than 70% of the total variance in 
MD trajectories. The eigenvalue, variance, and cumulative of the 
top 6 PCs can be downloaded from the raw data for PC. PCA 
results showed in trajectory frames which colored from blue to 
red in chronological order. Because there are nearly only two 
statues for a protein, active and inactive, the frames are divided 
into two clusters in this server based on the top 3 PCs (Figs. 10A 
and B).

The atomic fluctuations of a system are correlated with 
one another and can be assessed by analyzing the magnitude of 
all pairwise cross-correlation coefficients. Blue indicates the 
correlated residues and red indicates the anticorrelated residues. 
The pairwise residues with the higher correlated coefficients 
(>0.8) and with a higher anticorrelated coefficient (<−0.4) are 

Figure 8. (A) The fraction of native contact analysis and (B) the Rg.

Figure 9. (A) RMSF and (B) The B-factor.

Figure 7. (A) RMSD of protein backbone and ligand and (B) RMSD histogram of receptor.
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linked with light pink and light blue lines. The secondary structure 
schematic is added to the top and right margins of the dynamical 
residue cross-correlation map (helices black, strands gray, and 
loops white) (Fig. 11).

CONCLUSION
In this study, we applied the immunoinformatics 

approach with genome diversity and conservancy analysis, in 
silico epitope prediction, molecular docking, and MD simulation in 
epitope-based breast cancer vaccine research. We identified seven 
putative epitope candidates from the conserved region of ERBB2, 
PTEN, and MUC4 protein, constructed as multiepitope which has 
the potential to be a new vaccine candidate for breast cancer. This 

approach may be considered as a new, safe, and efficient approach 
in vaccine research. Further research studies through in vitro and 
in vivo tests are necessary to validate the results.
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