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ABSTRACT
This review begins with an introduction to the basic skeleton and classes of flavonoids. Studies on flavonoids have 
shown that the presence or absence of their functional moieties is associated with enhanced cytotoxicity toward cancer 
cells. Functional moieties include the C2–C3 double bond, C3 hydroxyl group, and 4-carbonyl group at ring C and 
the pattern of hydroxylation at ring B. Subsequently, the current knowledge on the chemistry, sources, pharmacology, 
and anticancer properties of diosmetin (DMT) and tamarixetin (TMT), two lesser-known methylated flavonoids with 
similar molecular structures, is updated. DMT is a methylated flavone with three hydroxyl groups, while TMT is 
a methylated flavonol with four hydroxyl groups. Both DMT and TMT display strong cytotoxic effects on cancer 
cell lines. Studies on the anticancer effects and molecular mechanisms of DMT included leukemia and breast, liver, 
prostate, lung, melanoma, colon, and renal cancer cells, while those of TMT have only been reported in leukemia and 
liver cancer cells. These findings suggest that flavones lacking the C3 hydroxyl group at ring C are more cytotoxic than 
flavonols having the C3 hydroxyl group. The in vitro and in vivo cytotoxic activities of DMT and TMT against cancer 
cells involve different molecular targets and signaling pathways. From this study, it is clear that little is known about 
the pharmacology and anticancer properties of DMT and TMT. The potentials for further research into these aspects 
of the two lesser-known methylated flavonoids are enormous. 

INTRODUCTION 
Flavonoids represent the largest family of phenolic 

secondary metabolites from plants with more than 9,000 
compounds reported (Wang et al., 2011). They occur in most herbs, 
fruits, and vegetables (Kopustinskiene et al., 2020; Panche et al., 
2016). These polyphenols have a molecular structure consisting of 
two benzene rings A and B that are joined by a heterocyclic pyran 
ring C forming the benzopyrone (C6-C3-C6) moiety (Raffa et al., 
2017; Singh et al., 2014). Rings A and C are composed of the 
chroman (C6-C3) nucleus (Kanadaswami et al., 2005). The basic 
skeleton along with the functional moieties is shown in Figure 1.

Flavonoids are subdivided into classes including 
aurones, chalcones, flavonols, flavones, flavanones, flavan-3-ols, 
anthocyanins, and isoflavones (Kar Mahapatra et al., 2015, 2019). 
The majority of the flavonoids have the B ring linked in position 2 
to the C ring (Fig. 1), and they include aurones, chalcones, flavones, 
flavonols, flavanones, and flavanols (e.g., Guven et al., 2019; 
Panche et al., 2016; Raffa et al., 2017; Singh et al., 2014). Aurones 
are a subclass of flavones (Boumendjel, 2003), while chalcones 
are precursors of flavonoids and isoflavones (Kar Mahapatra et al., 
2015). Flavones (e.g., apigenin and luteolin) have a C2–C3 double 
bond and a 4-carbonyl group but they lack the C3 hydroxyl group 
at ring C. Flavonols (e.g., fisetin, quercetin, morin, and myricetin) 
possess all the three functional moieties (Fig. 1). Flavanones (e.g., 
naringenin, hesperitin, and taxifolin) lack the C2–C3 double bond, 
while flavanols (e.g., catechin and epicatechin) lack the C2–C3 
double bond and the 4-carbonyl group (Guven et al., 2019; Panche 
et al., 2016). Flavonoids in which the B ring is linked at positions 
3 and 4 to the C ring are called isoflavones (e.g., genistein and 
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daidzein) and neoflavonoids (e.g., calophyllolide), respectively 
(Panche et al., 2016). In nature, flavonoids occur as aglycones, 
glycosides, and methylated derivatives.

Flavonoids are endowed with health-promoting 
properties including nutraceutical, pharmaceutical, and 
cosmeceutical applications (Panche et al., 2016). Pharmacological 
properties include antioxidant, antimicrobial, antiallergic, anti-
inflammatory, anticarcinogenic, and antidiabetic effects (Guven et 
al., 2019; Raffa et al., 2017). The medical applications of flavonoids 
involve protection against cancer and other diseases, such as 
cardiovascular, rheumatic, obesity, high cholesterol, hypertension, 
and neurological disorders (Ballard and Junior, 2019; Havsteen, 
2002).The anticancer effects of flavonoids operate during the 
stages of initiation, promotion, and progression of carcinogenesis. 
In the initiation and promotion stages, flavonoids can inhibit cell 
proliferation (Abotaleb et al., 2019; Ballard and Junior, 2019). At 
the stage of progression, flavonoids can inhibit proangiogenesis, 
regulate metastasis, induce cytotoxicity and apoptosis, promote 
cell cycle arrest, and reverse multidrug resistance (MDR) or 
a combination of these mechanisms (Abotaleb et al., 2019; 
Chahar et al., 2011; Raffa et al., 2017). The antitumor activities 
of flavonoids include the induction of apoptosis, suppression of 
protein tyrosine kinase activity, antiproliferation, antimetastasis, 
anti-invasive effects, and antiangiogenesis (Kanadaswami et al., 
2005). Many studies have provided scientific evidence for the 
anticancer properties of flavonoids in vitro and in vivo (Ren et al., 
2013; Wang, 2000). Flavonoids such as quercetin and flavopiridol 
are now in phase II human clinical trials for different cancers.

When tested against different cancer cells, cytotoxicity 
of various classes of flavonoids based on IC50 values was ranked 
as flavones > flavonols > flavanones > isoflavones ~ flavanols 
(Kuntz et al., 1999; Li et al., 2008; Plochmann et al., 2007; Sak, 
2014). Flavones have the strongest cytotoxicity over the other 
groups of flavonoids due to the presence of the C2–C3 double 
bond, compared to the 4-carbonyl (4-oxo or 4-keto) group and the 
C3-hydroxyl group at ring C (Fig. 1). Disparity exists as stronger 
cytotoxicity has been reported in flavonols than flavones, for 
example, quercetin > kaempferol > apigenin (Wang et al., 2018). 

The pattern of hydroxylation in ring B influences the 
degree of cytotoxicity; for example, the ortho-hydroxylated 
quercetin (3′ and 4′) is three times more cytotoxic than the 
meta-hydroxylated morin (2′ and 4′). Other factors influencing 
cytotoxicity are O-methylation and glucuronidation in the A 
ring which are associated with enhanced cytotoxicity, while a 

higher number of hydroxyl residues and solubility are inversely 
correlated with cytotoxicity (Plochmann et al., 2007).

When tested against five different cancer cell lines, 
flavonoids can be categorized into those with strong and those 
with weak in vitro cytotoxic effects (Chang et al., 2008). Apigenin, 
luteolin, and fisetin of the strong category are characterized by 
having two hydroxyl groups in rings AC, while myricetin and 
morin of the weak category have three hydroxyl groups in rings AC 
(Fig. 1). Both naringenin and apigenin share the same molecular 
structure. Naringenin without the 2,3-double bond displayed weak 
cytotoxic effects suggesting the importance of the double bond 
between C2 and C3 (Chang et al., 2008). Genistein and daidzein 
are isoflavones in which ring B is attached to ring C at C3 instead 
of C2.

For polymethylated flavonoids (e.g., natsudaidain), a 
methoxy group at C8 and a hydroxyl group at C3 are essential 
for their antiproliferative activity of the flavonoids (Kawaii et al., 
1999). Isoflavones (e.g., genistein and daidzein) are flavonoids in 
which the B ring is linked in position 3 of the C ring (Chang et al., 
2008; Lopez-Lazaro, 2002; Lopez-Lazaro et al., 2002). Generally, 
isoflavones have weaker cytotoxicity than the other flavonoids 
linked in position 2. In addition, the sugar moiety of flavonoids 
(e.g., rutin and isoquercetin) reduces their cytotoxic activity 
(Lopez-Lazaro, 2002; Lopez-Lazaro et al., 2002). In flavonoids, 
the ring B catechol moiety of flavonoids (e.g., 3′,4′-diOH) and the 
‒OMe group at 5′ are beneficial toward their cytotoxicity, while 
glycosylation at C5 of ring A has adverse effects on cytotoxicity 

Figure 1. Basic skeleton of flavonoids (left) showing the C2–C3 double bond, 4-carbonyl group, and C3 
hydroxyl group of flavonols at ring C (right).

Figure 2. Molecular structures of diosmetin (R = H) (left) and TMT (R = OH) 
(right).
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(Wang et al., 2018).This review begins with an introduction to the 
basic skeleton and different classes of flavonoids. Subsequently, 
the current knowledge on the chemistry, sources, pharmacology, 
and anticancer properties of diosmetin (DMT) and tamarixetin 
(TMT), two lesser-known methylated flavonoids with similar 
molecular structure, is updated. Sources of information cited were 
from Google Scholar, PubMed, PubMed Central, Science Direct, 
J-Stage, PubChem, and Directory of Open Access Journals.

CHEMISTRY AND SOURCES

Diosmetin
DMT (4′-methylluteolin, luteolin 4′-methyl ether or 

5,7,3′-trihydroxy-4′-methoxyflavone) is a natural methylated 
flavone. Its molecular formula is C16H12O6 and its molecular weight 
is 300 g/mol (Patel et al., 2013). DMT has three hydroxyl groups 
at 5, 7, and 3′ positions (Fig. 2). Being a flavone, the molecule 
has a C2–C3 double bond and a 4-carbonyl group but lacks the 
C3 hydroxyl group at ring C. The DMT molecule is structurally 
similar to that of luteolin with the exception of the 4′-methoxy 
group in DMT and the 4′-hydroxyl group in luteolin. DMT is an 
aglycone of diosmin or DMT 7-O-rutinoside (Chen et al., 2019a). 

DMT has been isolated from many plant species. 
They include the aerial parts of Soroseris hookeriana (Hooker’s 
Soroseris) (Meng et al., 2000) and Petroselinum crispum 
(parsley) (Yoshikawa et al., 2000), Citrus fruit juices (Abad-
Garcia et al., 2014), and flowers of Chrysanthemum morifolium 
(chrysanthemum) (Lin and Harnly, 2010; Xie et al., 2009). From 

the flowers and leaves of Origanum vulgare (oregano), the contents 
of DMT have been reported to be 0.18 and 0.04 DW: mg/g dry 
weight (Radušienė et al., 2008). From the ethyl acetate fraction 
of the methanol extract of Eleocharis dulcis (water chestnut) peel, 
the content of DMT (30 mg/g) ranked second to that of fisetin 
(32 mg/g) (Zhan et al., 2016). Glycosides of DMT are commonly 
found in Citrus fruit juices, notably those of Citrus medica and 
Citrus bergamia (Caristi et al., 2006; Hostetler et al., 2017).

Tamarixetin
TMT (4′-O-methylquercetin, quercetin 4′-methyl ether or 

3,5,7,3′-tetrahydroxy-4′-methoxy flavonol) is a natural methylated 
flavonol with a molecular formula of C16H12O7 and molecular 
weight of 316 g/mol. TMT has four hydroxyl groups at 3, 5, 7, and 
3′ positions (Fig. 2). Being a flavonol, the molecule has a C2–C3 
double bond, a 4-carbonyl group, and a C3 hydroxyl group at ring 
C. It is structurally similar to isorhamnetin (3′-O-methylquercetin) 
and quercetin. TMT has been isolated from the leaves of Tamarix 
ramosissima (salt cedar) (Sultanova et al., 2001), Azadirachta 
indica (neem) (Yadav et al., 2017), and Psidium guajava (guava) 
(Shao et al., 2014). 

PHARMACOLOGY

Diosmetin
The anti-inflammatory, antioxidant, and hepatoprotective 

effects of DMT have been reported (Yang et al., 2017). Other 
pharmacological properties of DMT include antimicrobial (Meng 

Table 1. Anticancer effects and molecular mechanisms of diosmetin (DMT).

Cancer cell line and type Anticancer effect and molecular mechanism of diosmetin (reference)

MDA-MB-468 breast Inhibits cell proliferation, causes G1 cell cycle arrest, and exerts cytostatic effects via CYP1 enzyme-mediated conversion to luteolin (Androutsopoulos 
et al., 2009a)

MCF-7 breast Inhibits cell proliferation and its cytotoxic effects are dependent on CYP1 enzyme conversion to luteolin (Androutsopoulos et al., 2009b)

MDA-MB-231 breast Exerts antiproliferative and proapoptotic activities via cell cycle arrest and the mitochondria-mediated intrinsic apoptotic pathway (Wang et al., 2019)

HepG2 liver Exerts synergistic cytostatic effects and arrest G2/M cell cycle when applied with luteolin via CYP1A-catalyzed metabolism, activation of c-jun 
N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK), and P53/P21 upregulation (Androutsopoulos and Spandidos, 2013)

HepG2 liver Induces cell apoptosis by upregulating p53 via the transforming growth factorβ (TGF-β) signal pathway (Liu et al., 2016a)

SK-HEP-1 liver Inhibits cell metastasis by downregulating the expression levels of MMP-2 and MMP-9 via the protein kinase (PKC)/ mitogen-activated protein kinase 
(MAPK)/metalloproteinase (MMP) pathways (Liu et al., 2016b)

HepG2 liver Inhibits cell proliferation and induces apoptosis by regulating autophagy via the mammalian target of rapamycin (mTOR) pathway (Liu et al., 2016c)

HepG2 liver Triggers apoptosis by activation and inactivation of the p53/Bcl-2 pathway and the Notch3/nuclear factor-kappa B (NF-κB) pathway, respectively (Qiao 
et al., 2016)

HepG2 liver Inhibits cell proliferation and promotes cell apoptosis and cell cycle arrest by targeting chk2 (Ma and Zhang, 2020)

PC-3 and LNCaP prostate Suppresses cell proliferation via induction of apoptosis and cell cycle arrest (Oak et al., 2018)

NSCLC lung Induces apoptosis by producing reactive oxygen species (ROS) and reducing Nrf2 stability via suppression of the PI3K/Akt/ glycogen synthase kinase 3 
beta (GSK-3β) pathway (Chen et al., 2019b)

B16F10 melanoma Suppresses tumor progression and metastasis by inducing cell death and inhibiting angiogenesis (Choi et al., 2019)

HCT-116 colon Induces apoptosis, inhibits cell proliferation, and arrest G2/M cell cycle mediated by the membrane death receptor (Koosha et al., 2019a)

HCT-116 colon xenograft Reduces tumor growth in nude mice by downregulation of Bcl-2 and overexpression of Bax (Koosha et al., 2019b)

ACHN renal Induces apoptosis and cytotoxicity by reducing protein kinase B (AKT) phosphorylation via p53 upregulation (Qiu et al., 2020)

K562 leukemia Induces apoptosis via activation of caspases 8 and 3/7 and the death-inducing cytokine tumor necrosis factor alpha (TNFα) (Roma et al., 2019)

Bax = Bcl-2 associated X protein; Bcl-2 = B-cell lymphoma 2; chk2 = checkpoint kinase 2; CYP = cytochrome P450; JNK = c-jun N-terminal kinase; ERK = extracellular signal-regulated 
kinase; GSK-3β = glycogen synthase kinase 3 beta; MAPK = mitogen-activated protein kinase; MMP = metalloproteinase; mTOR = mammalian target of rapamycin; NF-κB = nuclear factor-
kappa B; Nrf2 = nuclear factor erythroid 2–related factor 2; PI3K = phosphoinositide 3-kinase; PKC = protein kinase C; ROS = reactive oxygen species; TGF = transforming growth factor-β; 
and TNFα = tumor necrosis factor alpha.
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et al., 2000), oestrogenic (Yoshikawa et al., 2000), neuroprotective 
(Bhatt and Benzeroual, 2013), drug-drug interaction (Bajraktari 
and Weiss, 2020), osteoblastic (Hsu and Kuo, 2008), and MDR 
protein inhibitory (van Zanden et al., 2005) activities. 

Tamarixetin
TMT displays anti-inflammatory (Lesjak et al., 2018; 

Park et al., 2018), cardioprotective (Fan et al., 2019; Hayamizu et 
al., 2018), gastroprotective (Yadav et al., 2017), and MDR protein 
inhibitory (van Zanden et al., 2005) activities. 

ANTICANCER PROPERTIES

Diosmetin
Against Caco-2 and HT-29 and colon cancer cells, the 

EC50 values of DMT were 108 and 204 μM, respectively (Kuntz et 
al., 1999). The cytotoxicity of DMT was 1.2 and 1.8 times weaker 
than those of luteolin. Against COLO 205 colon cancer cells, the 
IC50 value of DMT (82.9 μM) was slightly stronger than luteolin 
(96.9 μM) while diosmin (>200 μM) did not show any activity 
(Xie et al., 2009). Against A549 lung cancer cells, the IC50 value 
of DMT (101 μg/mL) was weaker than luteolin (59.6 μg/ml) and 
fisetin (86.5 μg/ml) (Zhan et al., 2016). Besides the structural 
features of flavonoids, for example, flavones versus flavonols, 
these results show that cytotoxicity also depends on the type of 
cancer cells tested. Cytotoxic effects of DMT toward HCT-116 
colon cancer cells (3.6 μg/ml) were 14 times more potent than 
toward CCD-841 normal colon cells (52 μg/ml) (Koosha et al., 
2019a).

The anticancer effects and molecular mechanisms of 
DMT toward different cancer cell lines are listed in Table 1. Against 
MCF-7 and MDA-MB-468 breast cancer cells, DMT inhibits cell 
proliferation, arrests G1 cell cycle, and exerts enhanced cytotoxic 
or cytostatic effects via CYP1 enzyme-mediated conversion to 
luteolin (Androutsopolous et al., 2009a, 2009b). DMT displays 
antiproliferative and proapoptotic activities against MDA-MB-231 
breast cancer cells via cell cycle arrest and the mitochondria-
mediated intrinsic apoptotic pathway (Wang et al., 2019).

When used in combination against HepG2 liver cancer 
cells, DMT and luteolin exhibit cytostatic effects and arrest 
G2/M cell cycle via CYP1A-catalyzed metabolism, P53/P21 
upregulation, and JNK and ERK activation (Androutsopolous 
and Spandidos, 2013). When tested with HepG2 and SK-HEP-1 
liver cancer cells, DMT induces cell apoptosis by upregulating 
p53 via the TGF-β signal pathway (Liu et al., 2016a); inhibits cell 
metastasis by downregulating the expression levels of MMP-2 and 
MMP-9 via the PKC/MAPK/MMP pathways (Liu et al., 2016b); 
inhibits cell proliferation by inducing apoptosis and by regulating 
autophagy via the mTOR pathway (Liu et al., 2016c); triggers 
apoptosis by activation of the p53/Bcl-2 pathway and inactivation 
of the Notch3/NF-κB pathway (Qiao et al., 2016); suppresses cell 
proliferation; and enhances cell apoptosis and cell cycle arrest by 
targeting chk2 (Ma and Zhang, 2020). 

The anticancer properties of DMT were studied using 
other cancer cells such as PC-3 and LNCaP prostate [1], NSCLC  
lung [2], B16F10 melanoma [3], HCT-116 colon [4], ACHN renal 
[5], and K562 leukemia [6] cell lines (Table 1). DMT suppresses 
cell proliferation of [1] via induction of apoptosis and cell cycle 
arrest (Oak et al., 2018); induces apoptosis of [2] by producing 

ROS and reducing Nrf2 stability via suppression of the PI3K/
Akt/GSK-3β pathway (Chen et al., 2019b); and suppresses 
tumor progression and metastasis of [3] by inducing cell death 
and inhibiting angiogenesis (Choi et al., 2019). DMT promotes 
apoptosis, inhibits cell proliferation, and arrests G2/M cell 
cycle of [4] mediated by the membrane death receptor (Koosha 
et al., 2019a); reduces tumor growth of [4] in nude mice via 
downregulation of Bcl-2 and overexpression of Bax (Koosha et 
al., 2019b); promotes apoptosis and cytotoxicity of [5] by reducing 
AKT phosphorylation via p53 upregulation (Qiu et al., 2020); and 
induces apoptosis of [6] via activation of caspases 8 and 3/7 and 
the death-inducing cytokine TNFα (Roma et al., 2018). 

Tamarixetin
Against A549 and HCC44 lung cancer cells, cytotoxicity 

of TMT was 19.6 and 20.3 μM, respectively (Sak et al., 2018). 
Its cytotoxicity was 3.7 and 5.3 times stronger than that of 
quercetin. The IC50 values of TMT were comparable to those of 
isorhamnetin (3′-O-methyl quercetin) with values of 26.6 and 
15.9 μM, respectively. Cytotoxicity of TMT against four different 
leukemia cell lines, Based on IC50 values, cytotoxicity of TMT 
against four different leukemia cell lines were 5.5 μM for U937 
cells, 7.5 μM for HL-60 cells, 7.5 μM for Molt-3 cells and 24 
μM for K562 cells (Nicolini et al., 2014). For Molt-3 and HL-
60 leukemia cells, IC50 values were both 7.5 μM. In a study on 
the antiproliferative effects of quercetin and catechin metabolites 
in IC50 values, the cytotoxicity of TMT (82 μM) was comparable 
to quercetin (85 μM) when tested against Caco-2 colon cancer 
cells (Delgado et al., 2014). Against MCF-7 breast and BxPC-
3 pancreatic cancer cells, cytotoxicity of TMT was 1.5 and 3.0 
times weaker than quercetin, respectively. When tested against 
AGS gastric, B16F10 melanoma, C6 glioma, and HeLa cervical 
cancer cells using quercetin, 7-O-methylated quercetin, and 
3-O-methylated quercetin, TMT exhibited the strongest cytotoxic 
activity (Darsandhari et al., 2020).

There are only two studies on the anticancer effects 
and molecular mechanisms of TMT (Table 2). Against 
doxorubicin-resistant K562/ADR leukemia cells, TMT inhibits 
cell proliferation, arrests G2/M cell cycle, and induces apoptosis 
(Nicolini et al., 2014). In another study, the cytotoxicity of 
TMT toward HepG2 and PLC/PRF/5 liver cancer cells and 
nude mice tumor xenograft was reported (Xu et al., 2019). In 
liver cancer cells, TMT suppresses cell viability via apoptosis, 
lactate dehydrogenase (LDH) release, caspase-3 activation, ROS 
accumulation, and decreased mitochondrial membrane potential. 
In liver tumor xenograft, TMT enhances the expression levels of 
proapoptotic proteins, including Bax and cleaved caspase-3, and 
inhibits the expression levels of antiapoptotic proteins. Both in 
vitro and in vivo studies showed that TMT significantly suppressed 
the phosphorylation of ERK and AKT in liver cancer cells and 
tumors (Xu et al., 2019). 

Structure–activity relationship (SAR) studies
There are very few structure–activity relationship (SAR) 

studies on DMT and TMT related to anticancer activities. In a 
study of the inhibitory effects of MDR proteins 1 (MRP 1), an 
important mechanism in MDR during cancer treatment, methylated 
flavonoids are among the best inhibitors with IC50 values ranging 
from 2.7 to 14.3 µM (van Zanden et al., 2005). Inhibition at 25 
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µM and IC50 values was 84% and 2.7 µM for DMT and 68% and 
7.4 µM for TMT. DMT was the strongest, while TMT ranked 
third. Values of DMT and TMT were stronger than luteolin and 
quercetin, suggesting that the 4′-methyl ether moieties of DMT 
and TMT contribute to their inhibitory effects. In another study on 
the inhibitory effects of flavonoids on NF-κB signaling in MDA-
MB-231 breast cancer cells, DMT (3.7%) displayed stronger 
inhibition than TMT (2.4%) (Amrutha et al., 2014). Inhibitory 
values of DMT and TMT were stronger than luteolin (3.0%) and 
much weaker than quercetin (3.7%), respectively.

CONCLUSION
Flavonoids are the largest family of phenolic secondary 

metabolites from plants. They have a molecular structure 
consisting of two benzene rings (A and B) joined by a pyran ring 
(C) forming a benzo-pyrone (C6-C3-C6) moiety. The majority 
of the flavonoids have the B ring linked in position 2 to the C 
ring, and they can be further divided into classes such as flavones, 
flavonols, flavanones, and flavanols. Studies have shown that the 
presence or absence of some functional moieties is associated with 
enhanced cytotoxicity toward cancer cells. They include C2–C3 
double bond, a 4-carbonyl group, and a C3 hydroxyl group at ring 
C and the pattern of hydroxylation (ortho or meta) at ring B. 

DMT and TMT are methylated flavonoids. DMT is a 
methoxyflavone having three hydroxyl groups, while TMT is a 
methoxyflavonol with four hydroxyl groups. This review on the 
anticancer properties of DMT and TMT supported the view that 
flavones without the C3 hydroxyl group are stronger in cytotoxicity 
against cancer cells than flavonols with the C3 hydroxyl group. 
However, further investigations are needed to confirm the role of 
the C3 hydroxyl group in cytotoxicity toward cancer cells.

Further clinical research on DMT and TMT is warranted 
to evaluate their safety and chemopreventive efficacy when used 
alone or in combination with other chemotherapy agents. Current 
knowledge of their pharmacokinetics, bioavailability, and SAR 
studies is meager. Further research on the structural modifications 
of DMT and TMT is needed for the synthesis of novel derivatives 
with enhanced inhibitory effects against different cancer cells 
and reduced cytotoxicity toward normal cells. For lesser-known 
bioactive compounds, such as DMT and TMT, their use in purified 
and standardized extracts containing chemical constituents 
that have the desired pharmacological activity may be the most 
practical approach. While Western medicine employs pure and 
single compounds, Chinese medicine (CM) has long used different 
combinations of compounds in the form of medicinal herbs to 
treat, ameliorate, and relieve the symptoms of different diseases. 
CM may have fewer and less severe side effects than single pure 

drugs, making them especially attractive to consumers. The 
development and clinical usage of different formulations of DMT 
and TMT with synergistic anticancer effects, reduced side effects, 
and acceptable quality control remain a major challenge. Little is 
known about the pharmacology and anticancer properties of DMT 
and TMT. The potentials for further research into these aspects of 
the two lesser-known methylated flavonoids are enormous. This 
will generate much research interest among medicinal chemists 
and researchers who are keen on lesser-known flavonoids.
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AKT = protein kinase B; Bax = Bcl-2 associated X protein; Bcl = B-cell lymphoma; ERK = extracellular signal-regulated kinase; LDH = lactate dehydrogenase; ROS = reactive oxygen species.
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