Polybrominated diphenyl ethers with broad spectrum antibacterial activity from the Indonesian marine sponge *Lamellodysidea herbacea*

Novriyandi Hanif1*, Muhammad Syarqul Ardan1, Dudi Tohir1, Andi Setiawan2, Nicole J. de Voogd1,4, Muhammad Farid1, Anggia Murni3, Junichi Tanaka6

1Department of Chemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor 16680, Indonesia.
2Department of Chemistry, Faculty of Mathematics and Natural Sciences, Lampung University, Bandar Lampung 35145, Indonesia.
3Naturalis Biodiversity Center, 2300 RA, Leiden, The Netherlands.
4Department of Chemistry, Biology and Marine Science, Faculty of Sciences, University of the Ryukyus, 903-0213, Okinawa, Japan.
5Tropical Biopharmaca Research Center, Bogor Agricultural University, Bogor 16128, Indonesia.
6Department of Chemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor 16680, Indonesia.

Corresponding Author
Novriyandi Hanif, Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University (Bogor Agricultural University), Bogor 16680, Indonesia. E-mail: nhanif@apps.ipb.ac.id

ARTICLE INFO
Received on: 14/01/2019
Accepted on: 25/10/2019
Available online: 03/12/2019

Key words:

ABSTRACT
The marine sponge *Lamellodysidea herbacea* is one of the marine organisms containing unique organobromine molecules polybrominated diphenyl ethers (PBDEs) which have diverse biological activities. Compounds 1–4 have been successfully isolated and their structures were elucidated using nuclear magnetic resonance (NMR) spectroscopy, single-crystal x-ray diffraction, and comparison with data in literature. Compound 1, C18H11O4Br6, was isolated in gram quantity (1.35 g) and elucidated as 2,3,4,5-tetrabromo-6-(3ʹ,5ʹ-dibromo-2ʹ-hydroxyphenoxy)phenol after NMR and X-ray analysis. Compound 1 takes a twist-like conformation with torsion angle \(\phi_1 = 27.7^\circ \), \(\phi_2 = 86.5^\circ \), while the angle of the ether bond is 117.5°. Compounds 2–4 were elucidated as 2,3,5-tribromo-6-(3ʹ,5ʹ-dibromo-2ʹ-hydroxyphenoxy)anisole, 2,3,5-tribromo-6-(3ʹ,5ʹ-dibromomethoxyphenoxy) phenol, and 2,3,5-tribromo-6-(3ʹ,5ʹ-hydroxyphenoxy)phenol, respectively. Antibacterial evaluation of 1–4 on Gram-positive and Gram-negative pathogens showed that the potent activity was at 0.08 µg/disk, 12 ± 0 mm (*Staphylococcus aureus* ATCC 6538); 6.25 µg/disk, 10 ± 0 mm (*Klebsiella pneumoniae*); and 50 µg/disk, 12 ± 0 mm (ampicillin-resistant *Escherichia coli*). Compounds 1, 2, and 4 showed ichthyotoxicity (zebrafish embryos, *Danio rerio*) at a level of LC50 >10 µg/ml [dead, 48 hours postfertilization (hpf)]. This is the first report that compound 4 inhibits the growth of antibiotic-resistant bacteria.

INTRODUCTION
Infectious disease is defined as any cause by pathogenic microorganisms, such as bacteria, viruses, parasites, or fungi, which can be directly or indirectly spread from one person to another. This problem becomes even more difficult if antimicrobial resistance is faced. Of the 194 countries, only 129 countries provided any national data on drug resistance (Reardon 2014). Most countries had found to have five antibiotic-resistant bacteria-drug pairs (Reardon 2014). The challenge is even greater in developing countries where the burden of infectious disease is high. This is because of the increasing use of antibiotics, poor sanitation and hygiene in communities and hospitals, and the increasing frequency of global travel, trade, and disease transmission (Laxminarayanan et al. 2013). Indonesia has started to face this problem since 1990 (Parathon et al. 2017). Survey of Indonesian public hospitals reported that patients in the national hospital were increased for antibiotic-resistant *Escherichia coli* (52%), Enterobacteriaceae producing extended-spectrum \(\beta \)-lactamase, *Klebsiella pneumoniae* (58%), and methicillin-resistant *Staphylococcus aureus* (MRSA) (Hadi et al. 2013). This was due to the high inappropriate use of antibiotics. In the global issue, infectious diseases caused by pathogenic Gram-positive vancomycin-resistant enterococci (VRE) and MRSA have paid attention over the past two decades.
However, the global current focus is emphasized to discover new antibiotics that can cure infectious diseases from Gram-negative Enterococcus faecium, S. aureus, K. pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacter species pathogens and their resistant forms. This pressing treatment challenge is that because the discovery for Gram-negative antibiotics is more difficult than those of Gram-positive bacteria (Walsh and Wencewicz, 2014). Only two approvals of antibiotic drugs, synercid and daptomycin, are largely used in response to VRE and MRSA, and there had not been a new antibiotic scaffold for Gram-negative pathogens (Walsh and Wencewicz, 2014). In 2015, a polybrominated diphenyl ether (PBDE) discovered from the marine sponge Dysidea (Lamellodysidea) was able to inhibit various pathogenic Gram-negative bacteria including resistant strains (Sun et al., 2015).

The marine sponge Lamellodysidea herbacea is known to have a unique group of marine natural products named with PBDEs. Interestingly, the true producer of PBDE was revealed as a marine cyanobacterium Oscillatoria spongilla (Faullner et al., 1994). This class of compounds has been found to exhibit a variety of bioactivities such as antibacterial (Handayani et al. 1997; Hanif et al., 2007; Liu et al., 2016; Sun et al., 2015), antifungal (Sionov et al., 2005), anti-cancer (Aray et al., 2017; Fu et al., 1995; Liu et al., 2004; Xu et al. 2005), and antiviral (Salam et al., 2014; Yamashita et al., 2015). PBDE is a unique molecule containing phenyl rings, –OH, ether, and –Br functional groups. The latter group is very useful in aromatic chemistry as a protecting group (Choi and Chi, 2001; Effenberger, 2002) and is rarely explored. All isolated PBDEs were evaluated for their activities using Gram-positive S. aureus and Gram-negative bacteria, including K. pneumoniae and E. coli ampicillin resistance. To become ready as antibacterial drug leads, we combine our assays using zebrafish embryos toxicity assay (Hanif et al., 2018). Antibacterial drugs should have the lowest possible toxic effect. It is quite challenging to discover antibacterial drugs with the lowest toxicity effect (Walsh and Wencewicz, 2014).

In our continuing interest on bioactive marine organisms (Hanif et al., 2018), four compounds (1–4) have been successfully isolated from the marine sponge L. herbacea collected in Ujung Kulon, and their structures were elucidated using NMR and IR spectroscopy, X-ray crystallography, and electrospray ionization mass spectrometry (ESIMS) spectrometry as well as comparison with the data in literature. We also evaluated the isolated compounds against Gram-positive S. aureus, Gram-negative K. pneumoniae, and E. coli ampicillin-resistant pathogens. Embryos zebrafish Danio rerio were used to evaluate the isolated compounds for their toxicity. We report here the isolation and structure elucidation of the compounds and the results of bioactivities.

MATERIAL AND METHODS

General
Ultraviolet (UV) and IR spectra were obtained on a Perkin Elmer Spectrum One Fourier-transformed infrared and on a Shimadzu phamscan 1700 spectrophotometer, respectively. ESIMS data were obtained from Waters Acquity Xevo G2-S quadrupole time-of-flight mass spectrometry with positive mode, and nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance III 500 spectrometer (500 MHz for 1H). Chemical shifts (δ) were referenced to trimethylsilane, deuterated chloroform (CDCl3), or deuterated acetone (Me4CO-d1) signals and are expressed in parts per million (ppm), and coupling constants (J) are in Hz. X-ray analysis was performed on a Rigaku AFC10 goniometer equipped with a Saturn 724+ detector. High-performance liquid chromatography (HPLC) separations were carried out on a Hitachi L-6000 pump fitted with a Shodex RI-101 refractive index and SPD-20A Shimadzu UV detectors. The column used for HPLC was Cosmosil 5SL-II-MS (10 × 250 mm), and analytical thin-layer chromatography (TLC) was performed on Merck silica gel 60 F254 plates and visualized with sulfuric acid with cerium sulfate. All solvents used were reagent grade.

Animal material
The marine sponge was collected by hand using scuba off Ujung Kulon, Indonesia, in March 2018. A voucher specimen has been deposited in the Department of Chemistry, IPB University, Indonesia (Code NH-G1-0067-17c).

Extraction and isolation
The marine sponge specimen (wet, 300 g) stored in ethanol (EtOH, CH3OH) was extracted three times using methanol (MeOH, CH3O) (3 × 200 ml). The combined extracts were concentrated under reduced pressure, and the residue was partitioned between n-hexane (CH3C6H14) and aqueous methanol (MeOH, CH3O) (90%). The latter layer was partitioned further between dichloromethane (CH2Cl2) and aqueous methanol (MeOH, CH3O) (50%). After the removal of methanol (MeOH, CH3O) from the latter layer and the addition of water (H2O), the residue was extracted with n-butanol (n-BuOH, CH3C4H10). All layers (n-hexane, C6H14; dichloromethane, CH2Cl2; n-butanol, n-BuOH, C4H10O) were checked for their activity against Gram-negative and Gram-positive bacteria. Crystallization of the most active layer (CH3Cl) from CHCl3–MeCO–MeCN (1:1.2) gave 1 (1.36 g in total). A noncrystalline fraction was successively separated using either a silica gel column eluted with hexane–EtOAc, EtOAc–MeOH, and MeOH followed by recrystallization, or by silica HPLC eluted with hexane–EtOAc to give compound 2 (5.4 mg), a mixture of compounds 2 and 3 (5.6 mg), and compound 4 (136.5 mg).

Evaluation of antibacterial activity and toxicity against fish embryos
Antibacterial activity (Hanif et al., 2007) was evaluated using agar-plate diffusion assay. Paper disks were impregnated with isolated compounds ranging from 0.08 to 50 µg/disk and placed on agar plates inoculated with S. aureus ATCC 6538, K. pneumoniae, E. coli, or ampicillin-resistant P. aeruginosa was used qualitatively to check whether the layer was active or not. Prior to and after the testing, all the materials were sterilized at 121°C for 20 minuets. DMSO was used as a negative control, while ampicillin and chloramphenicol were used as a positive control.

For toxicity (Hanif et al., 2018), fertilized and normally developed embryos of D. rerio were used. A series of sample concentrations was prepared from 1.25 to 10 µg/mL. After the 4-hour fertilization, the eggs were collected and rinsed with an
embryo rearing solution medium. The fertilized and normally divided eggs were selected under the microscope. The embryos were exposed to the compounds for 24, 48, and 72 hours in 24-well microplates. Observation of the embryos was based on whether it is dead or alive. The number of embryos used for each assay was 10. A positive control was 3,4-dichloroaniline, while the negative control was DMSO. The LC₅₀ was calculated by using the statistical software SPSS IBM 23.0. The experiment was repeated three times.

NMR analysis

A sample dissolved in CDCl₃ or Me₄C-N_d or a mixture of the two NMR solvents was measured with a Bruker Avance III 500 spectrometer (500 MHz for ¹H). The samples were measured for their ¹H NMR after scanning for 16–32 times. Tetramethylsilane was used as an internal standard.

X-ray analysis

All measurements were made on a Rigaku AFC10 goniometer equipped with Saturn724+ detector mounted graphite monochromated Mo-Kα radiation (λ = 0.71075 Å). A suitable crystal was selected and mounted in inert oil and transferred to the cold N₂ gas stream of the diffractometer. The crystal was kept at 123 K during data collection. The data were collected using CrystalClear-SM 1.4.0 SP1 (Rigaku, 2008) and processed with CrysAlisPro 1.171.39.46 (Rigaku, 2018).

Using Olex2 (Dolomanov et al., 2009), the structure was solved by the SHELXT (Sheldrick, 2015) structure solution program using Direct Methods and expanded using Fourier techniques. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. The structure was refined with the SHELXL (Sheldrick, 2008) refinement package using least-squares minimization. All hydrogen atoms were placed in idealized positions and refined as riding atoms isotropically. The crystal data, data collection, and structure refinement can be seen in Table 1.

RESULT AND DISCUSSION

Four PBDEs 1–4 have been isolated and their structures were identified by analyzing NMR, IR, UV spectral data, and X-ray diffraction study as well as comparison with published data in literatures. The major compound 1, C₁₄H₁₀O₂Br₅N₂ was obtained as crystals. The molecular formula of 1 was also confirmed by ESI-MS [M + Na]⁺ to have C₁₅H₁₁OBr₅N₂. The ¹H NMR spectrum taken in CDCl₃ exhibited only a pair of meta-coupled signals at δ 6.36 (1H, d, J = 2.2 Hz) and 7.41 (1H, d, J = 2.2 Hz). The presence of phenolic hydroxyls was inferred by the IR spectrum (3490 cm⁻¹). The presence of a substituted phenol group with auxochromes was also confirmed by UV absorption at λ_{max} (log ε) 293.4 nm (2.98). Comparison of the NMR data with those in literature (Calciu et al., 2009; Hanif et al., 2007; Norton et al., 1981) concluded that compound 1 is a hexabrominated diphenyl ether. Since the ratio of H/C is less than 1, confirmation of the chemical structure of 1 is very suitable for X-ray crystallography. X-ray analysis disclosed the conformation of 1 in addition to the structure as in Figure 1. Compound 1 takes a twist-like conformation with ϕ₁ = 27.7(6)[°]; ϕ₂ = 86.5(5)[°] and the angle of ether bond is 117.5[°]. This conformation may be explained by the presence of an ortho-bromo substituent (Klöser et al., 2008; Luthe et al., 2008) and by the rotation barrier of the meta- and the para-substitutions as well as a buttressing effect (Luthe et al., 2008).

The ¹H NMR data of 2 taken in CDCl₃/Me₄C-N_d (2/1) showed the presence of meta-coupled protons at δ 6.53 (1H, d, J = 1.5 Hz) and 7.36 (1H, d, J = 1.5 Hz) as in 1 with a methoxy group (δ 3H, s, 3.84) in one of the rings. An additional aromatic singlet at δ 7.78 (1H, s) suggested that 2 is a debromo analog of 1. Comparison with literature values (Norton et al., 1981) confirmed that 2 is 3,5-tribromo-6-(3',5'-dibromo-2'-hydroxyphenoxyl)anisole. Crystals of compound 2 were formed using the CHCl₃–Me₄C-N_d solution at room temperature. The purity of compound 2 was confirmed using TLC analysis to give R_f 0.62 [Hex/ EtOAc, 4/1].

Compound 3 was elucidated as 2,3,5-tribromo-6-(3',5'-dibromomethoxyphenoxyl)phenol after analyzing NMR spectra taken in CDCl₃/Me₄C-N_d (1/1) and comparing the data with literature (Hanif et al., 2007; Norton et al., 1981). Two methoxy groups were observed at δ 3.84 (3H, s) and 3.85 (3H, s). The remaining signals agreed for two sets of meta-coupled protons at δ 6.62 (1H, d, J = 2.1 Hz) and 7.37 (1H, d, J = 2.1 Hz). Two

<table>
<thead>
<tr>
<th>Crystal data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical formula</td>
<td>C<sub>15</sub>H<sub>10</sub>O<sub>2</sub>Br<sub>5</sub>N<sub>2</sub></td>
</tr>
<tr>
<td>M<sub>r</sub></td>
<td>693.63</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>Monoclinic, P<sub>2</sub><sub>1</sub>/n</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>123</td>
</tr>
<tr>
<td>a, b, c (Å)</td>
<td>4.74979 (10), 18.7360(3), 18.3463(4)</td>
</tr>
<tr>
<td>β (°)</td>
<td>91.6135 (19)</td>
</tr>
<tr>
<td>V (Å<sup>3</sup>)</td>
<td>1632.02 (6)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Radiation type</td>
<td>Mo Kα</td>
</tr>
<tr>
<td>μ (mm<sup>-1</sup>)</td>
<td>14.77</td>
</tr>
<tr>
<td>Crystal size (mm)</td>
<td>0.28 × 0.28 × 0.22</td>
</tr>
</tbody>
</table>

Table 1. Crystal data, data collection, and structure refinement.

<table>
<thead>
<tr>
<th>Data collection</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffractometer</td>
<td>Rigaku AFC10 goniometer with Saturn 724+ detector</td>
<td></td>
</tr>
<tr>
<td>T<sub>min</sub>–T<sub>max</sub></td>
<td>0.006, 0.024</td>
<td></td>
</tr>
<tr>
<td>No. of measured, independent and observed [I > 2σ(I)] reflections</td>
<td>20,780, 4,898, 4,152</td>
<td></td>
</tr>
<tr>
<td>R<sub>int</sub></td>
<td>0.037</td>
<td></td>
</tr>
<tr>
<td>(sin θ/λ) <sub>min</sub> (Å<sup>-1</sup>)</td>
<td>0.728</td>
<td></td>
</tr>
</tbody>
</table>

Refinement

R(F² > 2σ(F²)), wR(F²)	0.044, 0.127, 1.09
No. of reflections	4898
No. of parameters	207
No. of restraints	3
H-atom treatment	H-atom parameters constrained
Δ(Δρ_{max}) (e Å⁻³)	1.42, −0.77
singlet aromatic signals appeared in 7.83 (1H, s) and 7.80 (1H, s). The former downfield signal was dealt with the presence of the methoxy group in A ring (Hanif et al., 2007; Norton et al., 1981). In addition, the TLC analysis of the NMR sample indicated two spots with R_f 0.62 [Hex/EtOAc 4/1, Ce(SO$_4$)$_2$] and R_f 0.52 [Hex/EtOAc 4/1]. This result clearly indicates that compounds 2 and 3 were in a mixture with ratio 1:1 (1: 0.94 in NMR integration).

Compound 4 was shown to have molecular formula C$_{12}$H$_5$Br$_5$O$_3$ after NMR analysis (Me$_2$CO-d_6) and comparing the data with literature values (Norton et al., 1981). A pair of meta-coupled protons at δ 6.83 (1H, d, J = 2.2 Hz) and 7.39 (1H, d, J = 2.2 Hz) and an aromatic singlet at δ 7.56 (1H, s) were observed. The absence of a methoxy group in 4 suggested that 4 is a demethoxy analog of 2. The purity of 4 was confirmed by using HPLC and NMR analysis. Compound 4 is 2,3,5-tribromo-6-(3ʹ,5ʹ-dibromophenoxy)phenol. Chemical structures of compounds 2–4 are shown in Figure 2.

The results of the antibacterial assays are shown in Table 2. In the standard disk diffusion assay, compounds 1 and 4 showed activity against S. aureus ATCC 6538 in the range of 0.08–1.25 µg/disk with zone of inhibition 16 ± 0 – 14 ± 0 mm, while compounds 1 and 4 exhibited activity against K. pneumoniae in the range of 6.25–50 µg/disk with inhibition zone as 13 ± 0 – 10 ± 0 mm. Only compound 4 inhibited the

<table>
<thead>
<tr>
<th>Com.</th>
<th>S. aureus ATCC 6538</th>
<th>K. pneumonia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.08</td>
<td>0.16</td>
</tr>
<tr>
<td>1</td>
<td>12 ± 0</td>
<td>12.5 ± 0.71</td>
</tr>
<tr>
<td>2</td>
<td>0 ± 0</td>
<td>0 ± 0</td>
</tr>
<tr>
<td>4</td>
<td>12 ± 0</td>
<td>13 ± 0</td>
</tr>
</tbody>
</table>

NT = not tested.
growth of ampicillin-resistant \textit{E. coli} at 12 ± 0 mm at 50 µg/disk. These results point out that the presence of two phenolic hydroxyl groups as well as the less number of bromine atoms is important for the antibacterial activity. The finding also showed the antibacterial drug leads not only active against Gram-positive bacteria, but also especially against Gram-negative ampicillin-resistant \textit{E. coli}. In the toxicity assay against embryos of the zebrafish \textit{D. rerio}, compounds 1, 2, and 4 did not kill the embryos at 10 µg/ml.

CONCLUSION

Compounds 1–4 belonging to PBDEs were isolated and their structures were identified by using NMR spectroscopy, single-crystal X-ray diffraction, and comparison with the data in the literature. Compound 1 has a twist-like conformation with torsion angle $\phi_1 = 27.7 (6)\,^\circ$; $\phi_2 = 86.5 (5)\,^\circ$, while the angle of the ether bond is 117.5\,°. The isolated PBDEs showed broad-spectrum antibacterial activity, especially Gram-negative bacteria \textit{K. pneumoniae} and ampicillin-resistant \textit{E. coli}. This is the first report in which compound 4 showed antibacterial activity.

ACKNOWLEDGMENTS

This work was supported by the National Research Foundation, Indonesian Ministry of Research, Technology, and Higher Education, Indonesia, under its excellence basic research university program (1769/IT3.11/PN/2018) awarded to N.H.

AUTHORS’ CONTRIBUTION

CONFLICT OF INTEREST

The authors have declared that no competing interests exist.

FINANCIAL SUPPORT

This research was funded by Indonesian Ministry of Research, Technology, and Higher Education, Indonesia awarded to N.H.

REFERENCES

Rigaku Japan, CrystalClear-SM 1.4.0 SP1, Tokyo, Japan, 2008.

How to cite this article: