Journal of Applied Pharmaceutical Science Vol. 7 (06), pp. 229-237, June, 2017 Available online at http://www.japsonline.com DOI: 10.7324/JAPS.2017.70634 ISSN 2231-3354 CC BY-NC-58

An Overview of Naturally Synthesized Metallic Nanoparticles

Mariappan Vignesh, Puthamohan Vinayaga Moorthi^{*}

Department of Human Genetics and Molecular Biology, School of Life sciences, Bharathiar University, Coimbatore- 641 046, India.

ARTICLE INFO

ABSTRACT

Article history: Received on: 16/12/2016 Accepted on: 27/02/2017 Available online: 30/06/2017

Key words: Nanoparticles, Antimicrobial, Anticancer, Larvicidal activity, MCF-7. Nanotechnology is a powerful technology offers wide spectrum of devices, drugs etc for the welfare of human and other living organisms. Nanoparticles are the tiny molecule in the size of 1-100nm acting as potential antimicrobial, anticancer, Anti-Larvicidal and Antiparasitic Agents. Among the nanoparticles deployed, silver and gold nanoparticles have been greatly used against multidrug resistant microbes like *Staphylococcus aureus*, vector mosquitoes like *Aedes aegypti, Anopheles stephensi* and *Culex quinquifasciatus* as well as wide range of cancer Cell lines like MCF-7, Hep G2, etc. In the recent years, identification of dynamic nanoparticles, possessing antimicrobial, anti-larvicidal and anticancer activity, becomes important for defending the existing multitude of diseases spreading to human beings. In this context, this review was prepared to measure the dynamics of bioactive nanoparticles extremely used against pathogens, cell lines and vectors.

INTRODUCTION

The mosquito vectors are responsible transfer of deadly diseases such as malaria, chickungunia, filariasis and dengue. One of the major economic and health issues in several countries are the vector borne diseases caused by mosquito. The mosquito vector for human diseases like yellow fever and dengue is *Aedes agypti* mosquito (Suganya *et al.*, 2014). Similarly, mosquitoborne viral disease called dengue was found mostly in tropic and sub-tropic region around the world. Estimation by World Health Organization (WHO) states that there are about 50-100 million dengue infection are prevalent worldwide (Suresh *et al.*, 2015). A vector of *Wuchereria* species called *Culex quinquefasciatus* was responsible for causing lymphatic Filariasis which are wide spread in the tropical region with 120 million people infected and 40 million people are under clinical manifestation (Veerakumar *et al.*, 2013). Two million malarial cases were reported

annually in India (Gnanadesigan et al., 2011). Due to the development of insecticides resistance, biological magnification, serious effect on environmental quality and destruction of nontarget organism, the vector controlling methods involving chemical insecticides are becoming less effective (Suganya et al., 2014). The use of artificial insecticides in order to control mosquito-borne vector especially Aedes leads to high cost and harmful non-target effect (Suresh et al., 2015). Cancer, which is grouped as the uncontrolled development of cells, is one of the serious causes of death throughout the world. In the last few years, Increase of cancer patient have been observed (Abbas et al., 2015). The bites of Aedes agypti can transmit hamster reticulum cell sarcoma by transfer of tumor cell. They also plays role in changing the human metabolic pathway which lead to viral infection or/and oncogenesis (Benelli et al., 2016). There are several ways in the treatment of cancer by chemotherapy while there are multiple barriers that recently prevent the clinical advantages. Currently, the field of nanotechnology plays a major role in the cancer treatment through drug delivery method because of the good pharmacokinetic activity, better drug solubility, increased the halflife period of drugs. In addition to that they also have less toxic phytochemicals with target-specific nanoparticles which provide a new way of treating cancer (Joseph et al., 2015).

^{*} Corresponding Author

Dr. P. Vinayaga Moorthi, Assistant Professor, Department of Human Genetics and Molecular Biology, School of Life Sciences, Bharathiar University, Coimbatore – 641 046, Tamil Nadu, INDIA. Email: vinayputhu@gmail.com; Mobile: +91-99948-09189

Benelli, 2016 stated that nanodrugs with multipotency against mosquito-borne diseases and cancers are required. In particular, a focus on effectiveness and non-target effects of metal nanoparticles synthesized using natural products as reducing agents may support the development of novel antiplasmodial, mosquitocidal, and anticancer tools. In this vision we have prepared this review. This review mainly focuses on the pharmacokinetics activity of several nanoparticles such as antiparasitic, anticancer, antimicrobial, antioxidant and antiinflammation.

AGNPS (AgNps)

Antiparasitic Study

The AgNps (AgNps) synthesised using leaf extract of *Rhizophora mucronata* have excellent larvicidal activity (LC₅₀ and LC₉₀) against the larvae of *Aedes aegypti* and *Culex quinquefasciatus* with respect to 0.585 mg/L and 2.615 mg/L and 0.891 and 6.291 mg/mL (Gnanadesigan *et al.*, 2011). The AgNps synthesised through aqueous extract of stem of *Cissus quadrangularis* have excellent adulticidal activity (LC₅₀ and LC₉₀) against *Hippobosca maculata* with respect to 37.08, 40.35 and 6.30 mg/L as well as 175.46, 192.17 and 18.14 mg/L. It also revealed larvicidal activity against *Rhipicephalus (Boophilus) microplus* (LC₅₀ values of 50.00, 21.72 and 7.61 mg/L; LC₉₀ values of 205.12, 82.99 and 22.68 mg/) (Santhoshkumar *et al.*, 2012).

The mesocarp layer extract Cocos nucifera coir engineered AgNps have potential larvicidal activity against Anopheles stephensi and C. quinquefasciatus with an LC₅₀ value of 87.24 and 49.89 as well as LC₉₀ values of 230.90 and 84.85 mg/L respectively (Roopan et al., 2012). AgNps from bark aqueous extract of Ficus racemosa have shown excellent larvicidal activity against C. quinquefasciatus (LC₅₀=67.72 and 63.70 mg/L) and C. gelidus (LC₅₀=12.00 and 11.21 mg/L) (Velayutham et al., 2012). Similarly, AgNps from aqueous aerial extract of Ammannia baccifera represented dynamic activity against mosquito larvae namely A. subpictus (LC₅₀ = 257.16) and C. quinquefasciatus $(LC_{50} = 210.88 ppm)$. also have shown toxic (LC_{50}) effect against A. subpictus and C. quinquefasciatus with respect to 29.54 and 22.32ppm respectively (Suman et al., 2013). Similarly AgNps form Delphinium denudatum have excellent anti-mosquito activity against second instar larvae of A. Aegypti (LC₅₀: 96ppm (24hrs) and 9.6ppm (48hrs)) (Suresh et al., 2014).

AgNps engineered from extracts of leaf and fruit of *Couroupita guianensis* and revealed broader larvicidal activity against A. aegypti (Leaf: $LC_{50} - 44.55$ ppm and $LC_{90} - 318.39$ ppm) and (Fruit: $LC_{50} - 49.96$ ppm and $LC_{90} - 568.84$ ppm) when compared to methanol extract (Leaf: $LC_{50} - 85.75$ ppm and $LC_{90} - 598.63$ ppm and (fruit; LC50 - 67.78 ppm and LC90 - 714.45 ppm). However colloid synthesis of AgNPs using aqueous extract of the *C. quianensis* by decoction method showed extensive mortiality rate against *A. aegypti* (Leaf: $LC_{50} - 2.1$ ppm and $LC_{90} - 5.59$ ppm) and (Fruit: $LC_{50} - 2.09$ ppm and $LC_{90} - 5.7$ ppm)

(Vimala *et al.*, 2014). AgNps from leaf extract of *Feronia elephantum* (Rutaceae) have revealed potential antiparasitic activity (LD_{50} and LD_{90}) against adult of *A. Stephensi*: 18.041 and 32.575µgmL⁻¹, *A. Aegypti*: 20.39 and 37.53µgmL⁻¹, *C. quinquefasciatus*: 21.79 and 39.59 µgmL⁻¹) (Veerakumar *et al.*, 2014).

Leaf extract of *Leucas aspera* synthesized AgNps portrayed potential larvicidal activity against fourth instar larvae of *A. aegypti* with respect to (LC₅₀ and LC₉₀ values of 8.56 and 31.30 mg/l) (Suganya *et al.*, 2014). *Aloe vera* originated AgNps showed considerable toxicity against I, II, III, IV and pupae of *A. stephensi* with respect to 48.79, 59.09, 70.88, 83.58 and 152.55ppm (Dinesh *et al.*, 2015).

Leaf extract of Annona muricata emerged AgNps exemplified excellent larvicidal activity against A. aegypti (LC₅₀ and LC_{90} values: 12.58 and 26.46 µg mL⁻¹), A. stephensi (15.28 and 31.91 μ gmL⁻¹) and C. *quinquefasciatus* (18.77 and 35.72 μ g mL⁻¹) (Santhosh et al., 2015). Larvicidal activity of Euphorbia hirta leaf extract generated AgNps found highly active against the first and fourth instar larvae and pupae of Anopheles stephensi (LC₅₀: 10.14, 16.82, 21.51, and 27.89 ppm; LC₉₀: 31.98, 50.38, 60.09, and 69.94 ppm) (Priyadarshini et al., 2012). Acetone leaf extract of Morinda tinctoria synthesized AgNps have greater larvicial activity against third instar larvae of C. quinquefasciatus (LC₅₀: 8.088 and 1.442 ppm) (Kumar et al., 2014). The synthesised AgNps from Chomelia asiatica (Rubiaceae) has potential larvicidal activity against the mosquito vectors of A. stephensi, A. aegypti, and C. quinquefasciatus (Diptera: Culicidae) with the following LC₅₀ and LC₉₀ values. A. stephensi had 17.95 and 33.03 µg/mL while A. aegypti and C. quinquefasciatus had 19.32 and 34.87 µg/mL and 20.92 and 37.41 µg/mL respectively (Muthukumaran et al., 2014).

The synthesised AgNps from Feronia elephantum (Rutaceae) has effective larvicidal activity against the C. quinquefasciatus, A. stephensi, and A. aegypti with LC_{50} and LC_{90} values of 11.56 and 20.56 μ g mL⁻¹, 13.13 and 23.12 μ g mL⁻¹, and 14.19 and 24.30 μ g mL⁻¹ respectively (Veerakumar *et al.*, 2014). AgNps from leaf extract of Gmelina asiatica had potent larvicidal activity against larvae of A. stephensi (LC₅₀: 22.44 and LC₉₀: 40.65 μ g/mL), Aedes aegypti (LC₅₀: 25.77 and LC₉₀ = 45.98 μ g/mL) and C. quinquefasciatus (LC₅₀: 27.83 and LC₉₀ = 48.92 μ g/mL) (Muthukumaran et al., 2015). The AgNps synthesised using aqueous fruit extract of putranjiva, Drypetes roxburghii (Wall.) has an effective larvicidal activity against C. quinquefasciatus (LC₅₀ value: 0.8632, 1.1619 and 1.2814 ppm with respect to second, third and fourth instar larvae while A. stephensi had LC_{50} values of 0.7329, 0.8397 and 0.9848 ppm (Haldar et al., 2013). The AgNps synthesised from the crude methanol and aqueous extraction of Nelumbo nucifera Gaertn. (Nymphaeaceae) have excellent larvicidal activity against the fourth instar larvae of A. subpictus (LC₅₀ = 8.89, 11.82, and 0.69ppm; LC₉₀ = 28.65, 36.06, and 2.15ppm) and C. quinquefasciatus (LC₅₀ = 9.51, 13.65, and 1.10ppm; $LC_{90} = 28.13$, 35.83, and 3.59ppm) (Santhoshkumar *et* al., 2010).

BIOLOGICAL SOURCE/	SIZE	NAME OF MOSQUITO	LETHAL CONCEN	DEFEDENCES	
METHOD	(NM)	SPECIES	LC ₅₀	LC ₉₀	- KEFERENCES
Leaf extract of Rhizophora	60.05	Aedes aegypti	0.585	2.615	Gnanadesigan et al.,
mucronata	60-95	Culex quinquefasciatus	0.891	6.291	2011
Stem Aqueous extract of Cissus quadrangularis		Hippobosca maculata	37.08, 40.35, 6.30	175.46, 192.17, 18.14	
	42.46	Rhipicephalus (Boophilus) microplus	50.00, 21.72, 7.61	205.12, 82.99, 22.68	- Santhoshkumar <i>et al.</i> , 2012
Mesocarplayer extract of Cocos		Anopheles stephensi	87.24	230.90 ± 17.10	
nucifera	23 ± 2	Culex quinquefasciatus	49.89	84.85 + 6.50	- Roopan <i>et al.</i> , 2012
Bark aqueous extract of Ficus		Culex quinquefasciatus	67.72.63.70		Velavutham <i>et al</i>
racemosa	250.6	Culex gelidus	12.00. 11.21		2012
Aqueous aerial extract of		Anopheles subpictus	257.16		
Ammannia baccifera	10-30	Culex quinquefasciatus	210.88		- Suman <i>et al.</i> , 2013
Aqueous root extract of	85	Aedes aegypti	96,9.6		Suresh et al., 2014
Ethyl acetate extract of leaf and fruit of <i>Couroupita guianensis</i> Aubl.	Leaf: 10-45 Fruit: 5-15	Aedes aegypti	Leaf: 44.55 Fruit: 49.96	Leaf: 318.39 Fruit: 568.84	Vimala <i>et al.</i> , 2014
Methanol extract of <i>Couroupita</i> guianensis Aubl.		Aedes aegypti	Leaf: 85.75 Fruit: 67.78	Leaf: 598.63 Fruit: 714.45	Vimala et al., 2014
Colloid synthesis of aqueous extract of <i>Couroupita guianensis</i> Aubl		Aedes aegypti	Leaf: 2.1 Fruit: 5.59	Leaf: 2.09 Fruit: 5.7	Vimala <i>et al.</i> , 2014
Leafs of Melia azedarach using		Aedes aegypti	4.27	12.61	
2,7.bis[2-[diethylamino]-ethoxy] fluorence	3-31	Culex quinquefasciatus	3.43	10.29	Ramanibai et al., 2014
		Anopheles stephensi	18.041	32.575	
Leaf extract of Feronia	18-45	Aedes aegypti	20.399	37.534	Veerakumar et al.,
elephantum (Rutaceae)	10 15	Culex quinquefasciatus	21.798	39.596	- 2014
Leaf extract of Leucas aspera	25-80	Aedes aegypti	8.56, 10.03, 14.46, 13.45, 17.41, 27.49	21.5685, 93.0392, 39.6485, 42.2029, 31.3009, 53.2576	Suganya et al., 2014
Leaf extract of Aloe vera	35-55	Anopheles stephensi	48.79, 59.09, 70.88, 83.58, 152.55		Dinesh et al., 2015
		Aedes aegypti	12.58	26.46	
Leaf extract of Annona muricata	20-53	Anopheles stephensi	15.28	31.91	Santhosh et al., 2015
		Culex quinquefasciatus	18.77	35.72	
Leaf extract of Euphorbia hirta	30-60	Anopheles stephensi	10.14, 16.82, 21.51, 27.89	31.98, 50.38, 60.09, 69.94	Priyadarshini <i>et al.</i> , 2012
Aqueous leaf extract of <i>Morinda</i> <i>tinctoria</i> using acetone	60-95	Culex quinquefasciatus	8.088, 1.442		Kumar et al., 2014
		Anopheles stephensi	17.95	33.03	
Aqueous leaf extract of		Aedes aegypti	19.32	34.87	- Muthukumaran <i>et al.</i> , 2014
Chometta astatica (Rublaceae)		Culex quinquefasciatus	20.92	37.41	2014
Lasfantes et af Essenia		Anopheles stephensi	11.56	20.56	Vie and an an at al
Leaf extract of <i>Feronia</i>	20-60	Aedes aegypti	13.13	23.12	- veerakumar <i>et al.</i> ,
elephanium (Rutaceae)		Culex quinquefasciatus	14.19	24.30	2014
		Anopheles stephensi	22.44	40.65	Mathalanaaaaaaaaaaa
Leaf extract of Gmelina asiatica	32	Aedes aegypti	25.77	45.98	- Muthukumaran <i>et al.</i> ,
		Culex quinquefasciatus	27.83	48.92	2015
Aqueous fruit extract of	26.6	Culex quinquefasciatus	0.86, 1.16, 1.28		Holder at al. 2012
Drypetes roxburghii	20.0	Anopheles stephensi	0.73, 0.83, 0.98		
Crude methanol and aqueous extraction of <i>Nelumbo nucifera</i>	45	Anopheles subpictus	8.89, 11.82, 0.69	28.65, 36.06, 2.15	Santhoshkumar et al.,
		Culex quinquefasciatus	9.51, 13.65, 1.10	28.13, 35.83, 3.59	2010
Aqueous leaf extract of Mukia	6/	Aedes aegypti	0.211	0.703	Chitra et al 2015
maderaspatana		Culex quinquefasciatus	0.094	0.482	Cinua ei ai., 2013
Muunana koonicii loof orteo-t	25 25	Aedes aegypti	13.34, 17.19, 22.03, 27.57, 34.84	36.98, 47.67, 55.95, 67.36, 77.72	Sugarva et al 2012
Murraya koenigii leaf extract	25-55	Anopheles stephensi	10.82, 14.67, 19.13, 24.35, 32.09	32.38, 42.5 <u>2, 53.65,</u> 63.51, 75.26	Suganya <i>et ut., 2</i> 012

41.62, 50.33, 57.78, 68.41

Roni et al., 2012

20.60, 24.90, 28.22,

33.99

Table 1: Larvicidal activity of AgNps synthesized from different sources.

Leaf aqueous extract of Nerium

oleander

20-35

Anopheles stephensi

AgNps synthesised using aqueous leaf extract of Mukia maderaspatana (Cucurbitaceae) served as a potent larvicidal agent against A. aegypti and C. quinquefasciatus in which LC_{50} and LC_{90} of A. aegypti had 0.211 and 0.703ppm while C. quinquefasciatus had 0.094; 0.482ppm (Chitra et al., 2015). The AgNps synthesised from Murraya koenigii leaf extract have excellent larvicdical activity against A. stephensi (LC50 values: 10.82, 14.67, 19.13, 24.35, 32.09ppm and LC₉₀ values of 32.38, 42.52, 53.65, 63.51, 75.26ppm) while A. aegypti (LC₅₀ values of 13.34, 17.19, 22.03, 27.57, 34.84ppm and LC₉₀ values of 36.98, 47.67, 55.95, 67.36, 77.72ppm (Suganya et al., 2012). AgNps synthesised from leaf aqueous extract of Nerium oleander have effective larvicidal activity against first to fourth instar larvae and pupae of A. stephensi with following values: LC50 and LC90 of instar larvae were 20.60, 24.90, 28.22, and 33.99 ppm and 41.62, 50.33, 57.78, and 68.41 ppm while for pupae it was 39.55 and 79.10 ppm (Roni et al., 2012). The larvicidal activity of AgNps synthesised from different source is tabulated in table 1.

Anticancer Study

The anticancer potential of AgNps synthesised from *Acorus calamus* was evaluated against epidermoid carcinoma cell (A431) (Nayak *et al.*, 2015). The AgNps synthesised from plant polyphenol called caffeic acid through facile mediated process had shown effective anticancer activity against the human hepatoma (HepG2) cells by reducing the tumour cell viability through activating apoptosis (Guo *et al.*, 2015). The AgNps synthesised from *Andrographis echioides* (leaf) through aqueous extract process have been reported with potential anticancer activity against the human breast adenocarcinoma cancer cell line (MCF-7) with an inhibitory concentration (IC₅₀) of 31.5µg/mL at 24h incubation by suppressing its growth (inhibiting the proliferation of tumour cells) (Elangovan *et al.*, 2015). The anticancer activity of AgNps synthesized from different plant is listed in table 2.

The AgNps synthesised from ethanol extract of rose (*Rosa Indica*) petals have exhibited effective anticancer activity against human colon cancer cells (HCT 15 cells) by down regulating the Bcl-2 and Bax level by which upregulates activation of caspase 3 and 9 that finally induce apoptosis (Ramar *et al.*, 2015).

The AgNps synthesised from Mollick et al. (2015) have revealed excellent anticancer activity against the Jurkat cell (human T-cell lymphoma) by reducing the viability at the rate of 52.6%, 85.4%, and 91.6% with respect to the concentration of 10, 25, and 50µg/ml of AgNPs. Citrate coated AgNps (10nm in size) showed overall DNA damages and cytotoxic affect against human lung cells (BEAS-2B) after 24h by the comet assay (Gliga *et al.*, 2014).

Antimicrobial Study

The AgNPs synthesised from *C. maxima* (petals), *M. oleifera* (leaves) and *A. calamus* (rhizome) have exhibited strong

antimicrobial activity against *Bacillus subtilis* (gram positive) and *E. coli, P. aeruginosa* and *Vibrio cholerae* (gram negative) (Nayak *et al.*, 2015).

The AgNps synthesised from Andrographis echioides (leaf) through aqueous extract process also had excellent antibacterial activity against *E. coli* (28mm) and *S. aureus* (23mm) and moderate activity against *Salmonella typhi* (18mm), *Micrococcus luteus* (15mm) and *Pseudomonas aeruginosa* (13mm) (Elangovan *et al.*, 2015). The AgNps synthesised from rose (*Rosa Indica*) petals using ethanolic extraction have a potential antibacterial activities against *E. coli* (MTCC-40) and *K. pneumonia* (MTCC-740) (gram negative) than *S. mutans* (MTCC-896) and *Enterococcus faecalis* (MTCC-439) (Ramar *et al.*, 2015).

The antimicrobial activities of AgNps synthesized from different plant were represented in table 3. The AgNps synthesised from *Abelmoschus esculentus* (L.) pulp extract have potential antibacterial activity against *B. subtilis* (MTCC 736), *Bacillus cereus* (MTCC 306), *P. aeruginosa* (MTCC 8158), *Micrococcus luteus* (MTCC 1538) and *E. coli* (MTCC 68) with zone of inhibition (ZoI) of 33, 28, 26, 40 and 19mm respectively (Mollick *et al.*, 2015). Suresh et al. (2014) generated AgNps from root of *Delphinium denudatum* (DdAgNPs) and obtained ZoI of 10 and 8mm against *B. cereus* (NCIM 2106) and *E. coli* (ATCC 8739) respectively which was comparatively lower than the activity rendered by Mollick et al. (2015).

The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of citrate stabilized AgNps synthesised using sodium citrate and found 60, 160 mg/mL and 80, 160 mg/mL against *S. aureus* and *B. Megaterium* respetively. Similarly, Borah et al. (2013) reported that the MIC and MBC values of AgNps synthesised from *Ocimum sanctum* was 40, 120 mg/mL and 80, 140 mg/mL against *S. aureus* and *B. megaterium* respectively.

The AgNps from leaf extract of O. tenuiflorum exhibited potential antibacterial activity against E. Coli (gram negative) and Corynebacterium (gram positive) with ZoI of 10, 15, 20mm and 14, 16, 20mm respectively while it was 19, 24, 26mm against B. substilus (spore forming) (Patil et al., 2012). AgNps pellets synthesised from seeds of Elaeocarpus ganitrus (Rudraksha) and Foliage of Prosopis spicigera (Shami) exhibited excellent antibacterial activity against Р. aeruginosa and *S*. aureus with 25 and 21mm (Dwivedi et al., 2013).

Anti-inflammation Activity

The AgNps synthesised from ethanol extraction of rose (*Rosa Indica*) petals have potent anti-inflammatory activity by attenuating the production of superoxide anion (O^{-}) and nitric oxide (NO) which was studied in rat peritoneal macrophages (Ramar *et al.*, 2015).

Table 2: Anticancer activity of AgNps synthesized from different sources.

BIOLOGICAL SOURCE/METHOD	SIZE (NM)	SHAPE	CELL TYPE	REFERENCES
Extracts from <i>Cucurbita maxima</i> (petals), <i>Moringa oleifera</i> (leaves), <i>Acorus calamus</i> (rhizome).	30-72	Highly crystalline, roughly spherical and cuboidal	Epidermoid carcinoma cell (A431)	Nayak <i>et al.,</i> 2015
Caffeic acid (Plant Polyphenol))	3-10	Spherical	human hepatoma HepG2	Guo et al., 2015
Aqueous extract of leaf of Andrographis echioides		hexagonal	Human breast adenocarcinoma cancer cell line (MCF-7)	Elangovan <i>et al.</i> , 2015
Ethanolic extraction of petals of Rosa Indica	23.52-60.83	Crystalline and spherical	human colon cancer cells (HCT 15 cells)	Ramar <i>et al.,</i> 2015
Abelmoschus esculentus (L.) pulp extract	3-11	Spherical	Jurkat cell line (human T-cell lymphoma)	Mollick <i>et al.</i> , 2015
Citrate coated AgNps	10		human lung cells (BEAS-2B)	Gliga <i>et al.</i> , 2014

Table 3: Antimicrobial activity of AgNps synthesized from different sources.

BIOLOGICAL SOURCE/METHOD	SIZE	SHAPE	MICROBES NAME	ZONE OF	REFERENCES
	(NM)			INHIBITION (MM)	
Extract from Cucurbita maxima (petals),	30-72	Highly crystalline,	Bacillus subtilis, Escherichia coli,		Nayak et al.,
Moringa oleifera (leaves)		roughly spherical	Pseudomonas aeruginosa, Vibrio		2015
Acorus calamus (rhizome)		and cuboidal	cholera		
Aqueous extract of leaf of	-	Hexagonal	Escherichia coli,	28,	Elangovan et al.,
Andrographis echioides			Staphylococcus aureus	23,	2015
			Salmonella typhi	18,	
			Micrococcus luteus	15,	
			Pseudomonas aeruginosa	13	
Ethanolic extraction of petals of	23.52-	Crystalline and	Escherichia coli (MTCC-40)		Ramar et al.,
Rosa Indica	60.83	spherical	Klebsiella pneumonia (MTCC-740)		2015
			Streptococcus mutans (MTCC-896)		
			Enterococcus faecalis (MTCC-439)		
Abelmoschus esculentus (L.)	3-11	Spherical	Bacillus subtilis (MTCC 736)	33	Mollick et al.,
pulp extract			Bacillus cereus (MTCC 306)	28	2015
			Pseudomonas aeruginosa (MTCC 8158)	26	
			Micrococcus luteus (MTCC 1538)	40	
			Escherichia coli (MTCC 68)	19	
Aqueous root extract of	85	Spherical	Bacillus cereus NCIM 2106	10	Suresh et al.,
Delphinium denudatum			Escherichia coli ATCC 8739	08	2014
leaf extract of	25-40	Spherical	Escherichia coli	10,15,20	Patil et al., 2012
Ocimum tenuiflorum			Corynebacterium	14,16,20	_
			Bacillus substilus	19,24,26	-
Seeds of Elaeocarpus ganitrus			Pseudomonas aeruginosa	25,25	Dwivedi et al.,
(Rudraksha) and			Staphylococcus aureus	21,21	2013
Foliage of Prosopis spicigera (Shami)					

Table 4: Anticancer activity of gold nanparticles synthesized from different sources.

BIOLOGICAL SOURCE/METHOD		SHAPE	CELL TYPE	REFERENCES
	(NM)			
Areca catechu nut	22.2	Spherical	He La cell lines	Rajan et al., 2015
Kaempferol mediated	16.5	Spherical	MCF-7 (breat cancer cells)	Raghavan et al., 2015
Gold nanopraticles modified with alpha-tocopheryl and arginine-	4	Spherical	U8MG – human primary	Zhu et al., 2015
glycine–aspartic acid			glioblastoma cell line	

GNP

Anticancer Study

The biosynthesized gold nanopraticles (GNps) showed anticancer activity against He La cell lines and caused 66 % of cell death at 100 μ L concentration. (Rajan *et al.*, 2015). The anticancer activity of gold nanoparticles synthesized from different plant sources were represented in table 4. The GNps synthesised using a flavanol source, Kaempferol (3, 5, 7, 4 tetrahydroxyflavone) have potential anticancer activity against MCF-7 by inducing apoptosis by increasing in sub-G1 (hypodiploid) population. By inducing angiogenesis process they also inhibited vascular endothelial growth factor (VEGF) which was confirmed through chorioallantoic membrane assay (CAM). It also reduces the viability of cells of MCF-7 based on the dose and time depended manner (Raghavan *et al.*, 2015). Multifunctional dendrimer-entrapped GNps (Au DENPs) modified with alphatocopheryl succinate (α -TOS) and arginine–glycine–aspartic acid (RGD) peptide have potential targeting towards the cancer cells which over express the $\alpha_v\beta_3$ integrin and inhibits the proliferation of cancer cell (U8MG – human primary glioblastoma cell line) by inducing apoptosis (Zhu *et al.*, 2015).

Antimicrobial Study

The biosynthesized GNps showed antibacterial activity against *E. coli, K. Pneumonia, P. aeruginosa, Enterobacter* sp. and *S.aureus* with respect to ZoI of 10, 11, 12,10 and 14mm respectively (Rajan *et al.*, 2015). The antimicrobial activity of gold nanoparticles synthesized from a plant is given in the table 5.

Antioxidant study

The GNps have showed potent free radical scavenging activity against the nitric oxide (NO) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) (Rajan *et al.*, 2015).

Catalytic Activity

The GNps showed an excellent catalytic activity (reduction activity) of organic dye such as MB, MO, EY and 4-NP and this can be used in removing hazardous environmental pollutants (Rajan *et al.*, 2015).

Larvicidal Activity

GNps synthesised from *Cymbopogan citratus* have excellent antiparasitic activity against the *C. quinquefasciatus* (filaraial vector) (LC₅₀ and LC₉₀: 1.08 and 2.76ppm) while leaf extract of *Anthocephalus cadamba* exhibited 21.82 and 79.52ppm of LC₅₀ and LC₉₀ against third instar larvae of *C. quinquefasciatus* (Naresh Kumar *et al.*, 2012). The larvicidal activity of gold nanoparticles synthesized from a plant is given in the table 6.

IRON NANOPARTICLES (INPs)

Anticancer Study

The in vitro cytotoxicity of non-toxic β-cyclodextrin assemblied magnetic Fe_3O_4 nanoparticles (β -CD-MNPs) had shown greater anticancer activity against MCF-7 and it was also used as drug delivery system in Cancer therapy (Wang et al., 2015). The anticancer activity of iron nanoparticles synthesized from different plant is tabulated in table 7. A nanocomposites synthesized through layer-by-layer technique called multifunctional peptide-fluorescent-magnetic nanocomposites (Fe₃O₄@PEI@Cy5.5@PEG@HCBP-1 NPs, HPCPMNPs) have strong influence on the the cell viability of human embryonic lung fibroblast cell line (HLF) and human mesenchymal stem cell (MSC) at the concentration of 0.5 mg/mL and 1 mg/mL(p < 0.01) treatment. HPCPMNPs also have the capability of targeting or detecting the human lung cancer cell line (H460) of about 80%. This indicates that these nanocomoposites can be used in cancer diagnostic agent by modifying diverse fluorescence dyes and targeting ligands on its surface (Zhou et al., 2015). Semkina et al. (2015) reported the anticancer activity of Doxorubin (Doxanticancer drug) loaded superparamagnetic iron oxide (Fe₃O₄) magnetic nanoparticles (MNPs) with Bovine Serum Albumin (BSA) and Polyethylene Glycol (PEG) called MNP-BSA@Dox-PEG against Dox-resistance (C6 - rat glial tumour cells induced by Dox-sensitive N-nitrosomethylurea) (HEK293-human and embryonic kidney cells) by inhibiting the cell viability.

OTHER NANOPARTICLES

Anticancer Study

The anticancer activity of nickle doped cerium oxide (Ni_x Ce_{1⁻x}O2) had shown that there was 55% reduction of neuroblastoma cancer cell line viability without exhibiting harm to the normal healthy human embryonic kidney 293 cell-HEK293) (Abbas *et al.*, 2015).

PST-Dox (Galactoxyloglucan, PST001-conjugated Dox) nanoparticle showed a potential anticancer activity against lung adinocarcinoma (A549) and metastatic melanoma (A375) by inducing apoptosis. A PST-Dox nanoparticle was reported with non-toxic to normal lymphocytes up to certain dosage (Joseph *et al.*, 2015).

DPM@PL (DTX loaded methoxy polyethylene glycol-ss-vitamin E succinate (PSV) micelles (DPM) @ PPV-based liposomes) have shown inhibition of *in situ* tumour growth and pulmonary metastasis formation by DTX- inducing the apoptosis and decreased level of metastasis-promoting protein formation. They also have 81% and 92% inhibition rate against the tumour volume and lung metastasis. It doesn't show any systemic toxicity. This indicates that the DPM@PL nanoparticle which can be used as a delivery systems for breast cancer therapy (Xu *et al.*, 2015).

Silica nanopraticles (Dual-SiNPs) which was synthesised using dual aptamer modifier have excellent sensitive detection against two breast cancer cell such as mucin 1 (MUC1) (+) and human epidermal growth factor receptor 2 (HER2) (+) cell lines at the concentration of 1cell/100 μ L. This indicates its role in diagnosis and prognosis of breast cancer (Jo *et al.*, 2015).

In vitro study with DTX-loaded Gal-pD-TPGS-PLA/NPs (galactosamine conjugated polydopamine-modified NPs synthesized using D- α -tocopherol polyethylene glycol 1000 succinate-poly(lactide) showed potent anticancer activity against HepG2 on heptoma-bearing nude mice by decreasing the tumour size. It also had the higher efficiency of uptaking liver cancer cell line HepG2 which was confirmed by flow cytometry and confocal laser scanning microscopy. It reveals its drug delivery system in liver cancer (Zhu *et al.*, 2015).

By nab technology, human serum albumin loaded with lapatinib (Tykerb – tyrosine kinase inhibitor of HER2 and EFGR) was developed called LHNPs which has excellent anti-tumour efficiency by ceasing the proliferation of HER2 by over expressing SKBr3 (human breast cancer cell line) in tumour-bearing mice. They also suggested that it doesn't have hepatic or kidney toxicity (Wan *et al.*, 2015). LFC/CMC NPs (LFC131 peptide surface conjugated O-carboxymethyl chitosan nanoparticles (O-CMC NP)] have capability of increasing cancer cell death through selective delivery of DTX.

It also has higher efficiency of uptaking tumour cell by receptor mediated interaction of LFC131 with the CXCR4 which is over expressed in cancer cell and by inducing caspase-3 activity in A549 cancer cells. They have also suggested that the NPs have greater cell apoptosis by inducing apoptotic and necrotic cell death (Wang *et al.*, 2015).

SOURCE/METHOD	SIZE (NM)	SHAPE	MICROBE	S NAME	ZONE OF INHIBITION (MM) REFERENCES	
		_	Escherich	hia coli	10		
			Staphylococo	cus aureus	14		
Areca catechu nut 22.	22.2	Spherical	Enterob	pacter	10	Rajan et al., 2015	
			Pseudomonas	aeruginosa	12		
			K.pneumonia		11		
able 6: Larvicidal activity of	f gold nano	particles synthesized from	different sour	ces. I FTHAI	CONCENTRATION (LC)		
BIOLOGICAL		SIZE NAME OF MO	SQUITO		(MG/L) / PPM	REFERENCES	
SOURCE/METHOD)	(NM) SPECI	LC_{50}		LC ₉₀		
Leaf extract of Cymbopogan	citratus	Culex quinque	fasciatus	1.08	2.76	Naresh kumar et al., 2012	
Fable 7: Anticancer activity of							
BIOLOGICA	Iron Nanop AL SOURC	articles. E/METHOD	SIZE (NM)	SHAPE	CELL TYPE	REFERENCES	
BIOLOGICA Non-toxic β-cyclodextrin as	Iron Nanop AL SOURC	articles. E/METHOD agnetic Fe ₃ O ₄ nanoparticles	SIZE (NM) 12	SHAPE Spherical	CELL TYPE Michigan Cancer Foudation-7 (MCF-7- a breast cancer cell line)	REFERENCES Wang et al., 2015	
BIOLOGICA Non-toxic β-cyclodextrin as Multifunctional peptide-fluc layer	Iron Nanop AL SOURC ssemblied m prescent-ma by layer m	earticles. FE/METHOD agnetic Fe ₃ O ₄ nanoparticles gnetic nanocompositesusing ethod	SIZE (NM) 12 22.3	SHAPE Spherical	CELL TYPE Michigan Cancer Foudation-7 (MCF-7- a breast cancer cell line) Human embryonic lung fibroblast cell line (HLF), human mesenchymal stem cell (MSC) and human lung cancer cell line (H460)	REFERENCES Wang et al., 2015 Zhou et al., 2015	

Table 8: Anticancer and larvicidal activity of nanoparticles of different origin.

BIOLOGICAL SOURCE/METHOD	SIZE (NM)	SHAPE	CELL TYPE	REFERENCES
Nickle doped cerium oxide using Co-precipitation method	22	Spherical	H-SY-5Y neuroblastoma cancer cell line	Abbas et al., 2015
Galactoxyloglucan, PST001- conjugated Dox	10	Spherical	Lung adinocarcinoma (A549) and metastatic melanoma (A375)	Joseph et al., 2015
DTX loaded methoxy polyethylene glycol-s-s-vitamin E succinate (PSV) micelles (DPM) @ PPV-based liposomes	113.3	Shrapnel	in situ tumour growth and pulmonary metastasis	Xu et al., 2015
Gold Nanoparticle synthesised using Dual aptamer modifier	70		breast cancer cell such as mucin 1 (MUC1) (+) and human epidermal growth factor receptor 2 (HER2) (+) cell lines	Jo et al., 2015
galactosamine conjugated polydopamine-modified NPs synthesized using D-α- tocopherol polyethylene glycol 1000 succinate-poly(lactide)	209.4	Spherical	HepG2 - heptocellular carcinoma cell	Zhu et al., 2015
Human serum albumin loaded with lapatinib	145.2 ± 4.55		human breast cancer cell line - HER2	Wan et al., 2015
LFC131 peptide surface conjugated O-carboxymethyl chitosan	189 ± 3.6	Spherical	A549 lung cancer cells	Wang et al., 2015
Cobalt acetate solution and Bacillus thuringiensis	85.3	LC ₅₀ : 29.16, 8.12, 3.59 LC ₅₀ : 34.61, 6.94, 2.87	Anopheles subpictus Aedes aegypti	Marimuthu <i>et al.</i> , 2013

Larvicidal activity

Cobalt nanoparticles (CoNps) synthesised using cobalt acetate solution and *B. thuringiensis* (bio control agent) have potential larvicidal activity against fourth instar larvae of *A. subpictus* (malaria vector) and *A. aegypti* (dengue vector) (LC₅₀ values of 29.16, 8.12, 3.59 mg/L; 34.61, 6.94, and 2.87 mg/L) (Marimuthu *et al.*, 2013). The anticancer and larvicidal activity of

other nanoparticles synthesized in different sources is represented in the table 8.

kidney cells

CONCLUSION

In this review, a summary of various nanoparticles synthesised from different different biological and non biological

sources. Based on the bioactivity, they were listed under different categories such as larvicidal agents, anti-cancer, anti-bacterial, anti-inflammatory, antioxidant and catalytic activity which were discussed in detail. In search of novel biomolecules for the welfare of human beings, active metal of nanosized materials of different sources have been extensively implemented and studied for biological activities against wide range of pathogenic agents and carriers/vectors. This review addressed the prosperous role of nanoparticles in different health sectors of human beings such as vector borne disease, cancer and infectious diseases. As anticipated by Benelli (2016), wide range of research has been executed by the researchers for the benefit of human beings and was observed in this complete review on nanoparticles. Hence nanoparticles playing a dynamic role in treatment and diagnostic of various threatening diseases and soon will occupy an inevitable role in healthcare development than now.

ACKNOWLEDGEMENT

The authors express their sincere gratitude to Dr. A. Vijaya Anand, Head Department of Human Genetics and Molecular Biology and Bharathiar University for giving moral support in structuring the review.

Financial support and sponsorship: Nil.

Conflict of Interests: There are no conflicts of interest.

REFERENCE

Suganya G, Karthi S, Shivakumar MS. Larvicidal potential of AgNps synthesized from *Leucas aspera* leaf extracts against dengue vector *Aedes aegypti*. Parasitol Res. 2014; 113:1673–1679

Suresh U, Murugan K, Benelli G, Nicoletti M, Barnard DR, Panneerselvam C. Tackling the growing threat of dengue: *Phyllanthus niruri*-mediated synthesis of AgNps and their mosquitocidal properties against the dengue vector *Aedes aegypti* (Diptera: Culicidae). Parasitol Res. 2015; 114:1551–1562

Veerakumar K, Govindarajan M, Rajeswary M. Green synthesis of AgNps using *Sida acuta* (Malvaceae) leaf extract against *Culex quinquefasciatus, Anopheles stephensi,* and *Aedes aegypti* (Diptera: Culicidae). Parasitol Res. 2013; 112:4073–4085

Gnanadesigan M, Anand M, Ravikumar S, Maruthupandy M, Vijayakumar V, Selvam S. Biosynthesis of AgNps by using mangrove plant extract and their potential mosquito larvicidal property. Asian Pacific Journal of Tropical Medicine. 2011; 799-803.

Abbas F, Jan T, Iqbal J, Ahmad I, Sajjad M, Naqvi H. Facile synthesis of ferromagnetic Ni doped CeO₂ nanoparticles with enhanced anticancer activity. Applied Surface Science. 2015; 357: 931–936

Benelli G, Iacono AL, Canale A, Mehlhorn H. Mosquito vectors and the spread of cancer: an overlooked connection? Parasitol Res. 2016;115:2131–2137

Joseph MM, Aravind SR, George SK, Pillai KR, Mini S, Sreelekha TT. Anticancer activity of galactoxyloglucan polysaccharideconjugated doxorubicin nanoparticles: Mechanistic insights and interactome analysis. European Journal of Pharmaceutics and Biopharmaceutics. 2015; 93: 183–195

Santhoshkumar T, Rahuman AA, Bagavan A, Marimuthu S, Jayaseelan C, Kirthi AV. Evaluation of stem aqueous extract and synthesized AgNps using *Cissus quadrangularis* against *Hippobosca maculata* and *Rhipicephalus (Boophilus) microplus*. Experimental Parasitology. 2012; 132: 156–165

Roopan SM, Rohit, Madhumitha G, Rahuman AA, Kamaraj C, Bharathi A. Low-cost and eco-friendly phyto-synthesis of AgNps using *Cocos nucifera* coir extract and its larvicidal activity. Industrial Crops and Products. 2012; 43: 631–635

Velayutham K, Rahuman AA, Rajakumar G, Roopan SM, Elango G, Kamaraj C. Larvicidal activity of green synthesized AgNps using bark aqueous extract of *Ficus racemosa* against *Culex quinquefasciatus* and *Culex gelidus*. Asian Pacific Journal of Tropical Medicine. 2012; 95-101

Suman TY, Elumalai D, Kaleena PK, Rajasree SRR. GC–MS analysis of bioactive components and synthesis of AgNps using *Ammannia baccifera* aerial extract and its larvicidal activity against malaria and filariasis vectors. Industrial Crops and Products. 2013; 47: 239 – 245

Suresh G, Gunasekar PH, Kokila D, Prabhu D, Dinesh D, Ravichandran N. Green synthesis of AgNps using *Delphinium denudatum* root extract exhibits antibacterial and mosquito larvicidal activities. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2014; 127:61–66

Vimala R.T.V., Sathishkumar G, Sivaramakrishnan S. Optimization of reaction conditions to fabricate nano-silver using Couroupita guianensis Aubl. (leaf & fruit) and its enhanced larvicidal effect. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2014; 135:110–115

Veerakumar K and Govindarajan M. Adulticidal properties of synthesized AgNps using leaf extracts of *Feronia elephantum* (Rutaceae) against filariasis, malaria, and dengue vector mosquitoes. Parasitol Res. 2014; 113:4085–4096

Dinesh D, Murugan K, Madhiyazhagan P, Panneerselvam C, Kumar PM, Nicoletti M. Mosquitocidal and antibacterial activity of greensynthesized AgNps from *Aloe vera* extracts: towards an effective tool against the malaria vector *Anopheles stephensi*? Parasitol Res. 2015; 114:1519–1529

Santhosh SB, Yuvarajan R, Natarajan D. *Annona muricata* leaf extract-mediated AgNps synthesis and its larvicidal potential against dengue, malaria and filariasis vector. Parasitol Res. 2015. DOI 10.1007/s00436-015-4511-2

Priyadarshini KA, Murugan K, Panneerselvam C, Ponarulselvam S, Hwang JS, Nicoletti M. Biolarvicidal and pupicidal potential of AgNps synthesized using *Euphorbia hirta* against *Anopheles stephensi* Liston (Diptera: Culicidae). Parasitol Res. 2012; 111: 997–1006

Kumar RK, Nattuthurai N, Gopinath P, Mariappan T. Synthesis of eco-friendly AgNps from *Morinda tinctoria* leaf extract and its larvicidal activity against *Culex quinquefasciatus*. Parasitol Res. 2014; 114: 411–417

Muthukumaran U, Govindarajan M, Rajeswary M. Mosquito larvicidal potential of AgNps synthesized using *Chomelia asiatica* (Rubiaceae) against *Anopheles stephensi*, *Aedes aegypti*, and *Culex quinquefasciatus* (Diptera: Culicidae). Parasitol Res. 2014; 114: 989–999

Veerakumar K, Govindarajan M, Rajeswary M, Muthukumaran U. Low-cost and eco-friendly green synthesis of AgNps using *Feronia elephantum* (Rutaceae) against *Culex quinquefasciatus, Anopheles stephensi,* and *Aedes aegypti* (Diptera: Culicidae). Parasitol Res. 2014; 113: 1775–1785

Muthukumaran U, Govindarajan M, Rajeswary M, Hoti SL. Synthesis and characterization of AgNps using *Gmelina asiatica* leaf extract against filariasis, dengue, and malaria vector mosquitoes. Parasitol Res. 2015; 114: 1817–1827

Haldar KM, Haldar B, Chandra G. Fabrication, characterization andmosquito larvicidal bioassay of AgNps synthesized from aqueous fruit extract of putranjiva, *Drypetes roxburghii* (Wall.). Parasitol Res. 2013; 112: 1451–1459

Santhoshkumar T, Rahuman AA, Rajakumar G, Marimuthu S, Bagavan A, Jayaseelan C. Synthesis of AgNps using *Nelumbo nucifera* leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res. 2010; 108: 693–702

Chitra G, Balasubramani G, Ramkuma R, Sowmiya R, Perumal P. Mukia maderaspatana (Cucurbitaceae) extract-mediated synthesis of

AgNps to control Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). Parasitol Res. 2015; 114: 1407–1415

Suganya A, Murugan K, Kovendan K, Kumar PM, Hwang JS. Green synthesis of AgNps using *Murraya koenigii* leaf extract against *Anopheles stephensi* and *Aedes aegypti*. Parasitol Res. 2012; 112: 1385– 1397

Roni M, Murugan K, Panneerselvam C, Subramaniam J, Hwang JS. Evaluation of leaf aqueous extract and synthesized AgNps using *Nerium oleander* against *Anopheles stephensi* (Diptera: Culicidae). Parasitol Res. 2012; 112: 981–990

Nayak D, Pradhan S, Ashe S, Rauta PR, Nayak B. Biologically synthesised AgNps from three diverse family of plant extracts and their anticancer activity against epidermoid A431 carcinoma. Journal of Colloid and Interface Science. 2015; 457: 329–338

Guo D, Dou D, Ge L, Huang Z, Wang L, Gu N. A caffeic acid mediated facile synthesis of AgNps with powerful anti-cancer activity. Colloids and Surfaces B: Biointerfaces. 2015; 134: 229–234

Elangovan K, Elumalai D, Anupriya S, Shenbhagaraman R, Kaleena PK, Murugesan K. Phyto mediated biogenic synthesis of AgNps using leaf extract of *Andrographis* and its bio-efficacy on anticancer and antibacterial activities. Journal of Photochemistry and Photobiology B: Biology. 2015; 151: 118–124

Ramar M, Manikandan B, Raman T, Arunagirinathan K, Prabhu NM, Basu MJ. Biosynthesis of AgNps using ethanolic petals extract of *Rosa Indica* and characterization of its antibacterial, anticancer and antiinflammatory activities. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015; 138: 120–129

Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL. Size-dependent cytotoxicity of AgNps in human lung cells: the role of cellular uptake, agglomeration and Ag release. Particle and Fibre Toxicology. 2014; 11(11): 1-17

Mollick MR, Rana D, Dash SK, Chattopadhyay S, Bhowmick B, Maity D. Studies on green synthesized AgNps using Abelmoschus esculentus (L.) pulp extract having anticancer (in vitro) and antimicrobial applications. Arabian Journal of Chemistry. 2015. http://dx.doi.org/10.1016/j.arabjc.2015.04.033

Borah D, Deka P, Bhattacharjee P, Changmai A, Yadav RNS. *Ocimum sanctum* mediated silver nano particles showed better antimicrobial activities compared to citrate stabilized silver nano particles against multidrug resistant bacteria. Journal of Pharmacy research. 2013; 7: 478-482

Patil RS, Kokate MR, Kolekar SS. Bioinspired synthesis of highly stabilized AgNps using *Ocimum tenuiflorum* leaf extract and their antibacterial activity. Spectrochimica Acta Part A. 2012; 91: 234–238

Dwivedi P, Narvia SS, Tewari RP. Phytofabrication characterization and comparative analysis of Ag nanoparticles by diverse biochemicals from *Elaeocarpus ganitrus* Roxb., *Terminalia arjuna* Roxb., *Pseudotsuga menzietii, Prosopis spicigera, Ficus religiosa, Ocimum* sanctum, Curcuma longa. Industrial Crops and Products. 2013; 54: 22–31

Rajan A, Vilas V, Philip D. Studies on catalytic, antioxidant, antibacterial and anticancer activities of biogenic gold nanoparticles. Journal of Molecular Liquids. 2015; 212: 331–339

Raghavan BS, Kondath S, Anantanarayanan R, Rajaram R. Kaempferol mediated synthesis of gold nanoparticles and their cytotoxic effects on MCF-7 cancer cell line. Process Biochemistry. 2015. http://dx.doi.org/10.1016/j.procbio.2015.08.003 Zhua J, Fub F, Xiongb Z, Shenb M, Shi X. Dendrimerentrapped gold nanoparticles modified with RGD peptide and alphatocopheryl succinate enable targeted theranostics of cancer cells. Colloids and Surfaces B: Biointerfaces. 2015; 133: 36–42

Kumar AN, Jeyalalitha T, Murugan K, Madhiyazhagan P. Bioefficacy of plant-mediated gold nanoparticles and *Anthocepholus cadamba* on filarial vector, *Culex quinquefasciatus* (Insecta: Diptera: Culicidae). Parasitol Res. 2012; 112: 1053–1063

Wang C, Huang L, Song S, Saif B, Zhou Y, Dong C. Targeted delivery and pH-responsive release of stereoisomeric anti-cancer drugs using β -cyclodextrin assemblied Fe₃O₄. Appl. Surf. Sci. 2015. http://dx.doi.org/10.1016/j.apsusc.2015.09.189

Zhou Z, Chen L, Wang A, Maa Y, Zhang H, Zhu Y. Multifunctional fluorescent magnetic nanoparticles for lung cancer stem cell research. Colloids and Surfaces B: Biointerfaces. 2015; 134: 431–439

Semkina A, Abakumov M, Grinenko N, Abakumov A, Skorikov A, Mironova E. Core-shell-corona doxorubicin-loaded superparamagnetic Fe_3O_4 nanoparticles for cancer theranostics. Colloids and Surfaces B: Biointerfaces. 2015; 136: 1073–1080

Xu P, Meng Q, Sun H, Yin Q, Yu H, Zhang Z. Shrapnel nanoparticles loading docetaxel inhibit metastasis and growth of breast cancer. Biomaterials. 2015; 64: 10-20

Jo H, Her J, Ban C. Dual aptamer-functionalized silica nanoparticles for the highly sensitive detection of breast cancer. Biosensors and Bioelectronics. 2015; 71: 129–136

Zhu H, Tao W, Zhang H, Liu G, Wang T, Zhang L. Docetaxel (DTX)-loaded polydopamine-modified TPGS-PLA nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Acta Biomaterialia. 2015. http://dx.doi.org/10.1016/j.actbio.2015.11.031

Wan X, Zheng X, Pang X, Zhang Z, Zhang Q. Incorporation of lapatinib into human serum albumin nanoparticles with enhanced antitumor effects in HER2-positive breast cancer. Colloids and Surfaces B: Biointerfaces. 2015; 136: 817–827

Wang RT, Zhi XY, Yao SY, Zhang Y. LFC131 peptideconjugated polymeric nanoparticles for the effective delivery of docetaxel in CXCR4 overexpressed lung cancer cells. Colloids and Surfaces B: Biointerfaces. 2015; 133: 43–50

Marimuthu S, Rahuman AA, Kirthi AV, Santhoshkumar T, Jayaseelan C, Rajakumar G. Eco-friendly microbial route to synthesize cobalt nanoparticles using *Bacillus thuringiensis* against malaria and dengue vectors. Parasitol Res. 2013; 112(12): 4105-12.

How to cite this article:

Vignesh M and Moorthi PV. An Overview of Naturally Synthesized Metallic Nanoparticles. J App Pharm Sci, 2017; 7 (06): 229-237.