Phytochemical Screening and Antimicrobial Activity of Sub Fractions Asam Kandis (Garcinia diocia Blume)

Puji Ardiningsih*, Sumarni, Risa Nofiani, and Afghani Jayuska
Department of Chemistry, Mathematics and Natural Sciences Faculty, Tanjungpura University Jl. A.Yani Pontianak, Kalimantan Barat, Indonesia.

ABSTRACT
Fruit flesh of asam kandis Garcinia diocia Blume has been used people in Kalimantan Barat to preserve fresh fish. One of compounds which is probably responsible as a preservative agent is antimicrobial compounds. In this research, flesh fruit of asam kandis was extracted using methanol as a solvent. Furthermore, the crude extract was partitioned using various solvent such as n-hexane and ethyl acetate. On the basis of antimicrobial activity, methanolic and ethyl acetate fractions can inhibit growth of tested microorganisms. The best antimicrobial fraction was showed by ethyl acetate fraction due to inhibit all of tested microorganism but sub fraction E4 can only inhibit Candida albicans which are possibly responsible for antimicrobial activity were categorized as flavonoid.

INTRODUCTION

Garcinia is one of genus from Clusiaceae family which its spread in Asia, Africa, New Caledonia and Polynesia(Merza et al., 2004). Based on review of literature and observation of herbarium specimen, Indonesia has 64 species of Garcinia (Garcinia spp.) and 25 species of Garcinia found in Kalimantan Island (Uji, 2007). Extract ethyl acetate, acetone, and methanolic from seed of Garcinia cola exhibit antibacterial against Streptococcus pyogenes, Staphylococcus aureus, Plesiomonas shigelloides and Salmonella typhimurium (Seanego and Ndip, 2012). Extract of feel, leaves, and bark Garcinia mangostana L. showing strong antibacterial against Listeria monocytogenes and S.aureus (Palakawong et al., 2010). Asam kandis (Garcinia diocia Blume) has used Dayak and Malay communities in the District of West Kalimantan province for agent preservation. Dry powder pulp of fruit flesh asam kandis combined with salt can preserve fresh fish. This treatment will be extend the shelf life of fish at room temperature for several days.

Preservative agents have various mechanisms to preserve foodstuffs. One of mechanisms is antimicrobial activity. The first step to find out mechanism of asam kandis fruis as preservative agent, we evaluated antimicrobial activity from its extract, fraction and sub fraction. In addition, compound class of the extract and the sub fraction is evaluated by phytochemical screening with various specific reagents.

MATERIALS AND METHODS

Sampling of asam kandis fruit
Asam kandis fruit was collected from Mengkiang Village, Kecamatan Sanggau Kapuas Provinsi Kalimantan Barat. The sample was determined at Herbarium Bogoriense, Research Center for Biology Indonesian Institute Science, Indonesia.

Preparation and extraction of sample
Fruit flesh of asam kandis was sliced and dried gently. The dried sample was ground to be powder with size 60 mesh. The powder (2.5 kg) was macerated at room temperature using methanol as solvent. The maceration was carried out many times until colorless solvent. Furthermore, it was filtered using paper filter, Whatman No 1. The filtrate was concentrated using a vacuum rotary evaporator to get crude extract.
Partition of the crude extract

The crude extract was partitioned by various solvent, n-hexane and ethyl acetate which is different the polarity. The fractions were concentrated using a rotary evaporator. All of the fractions were performed antimicrobial assay.

Partial purification of the crude extracts

The fraction showing antimicrobial activity was purify continuously using various chromatography technique such as vacuum column chromatography (Si gel Merck 60, 70-230mesh) and gravity column chromatography (Si gel Merck 60, 70-230mesh).

Phytochemical test

The extract was put on a white plate and added some drops of various reagents, which is Dragendorff, Mayer, Wagner, Mg-HCl and FeCl₃. The color which is formed was recorded and used to predict class-compounds in the extract/fraction.

Antimicrobial assay of the extract

Antimicrobial activity of bacteria extract was determined based on modified well-diffusion agar methods (Valgas et al., 2007). Well with 6 diameter mm was made using a punch in plate containing nutrient agar medium then its medium was spreaded with inoculum of bacterial test. Furthermore, the well was filled with 200 μg/well of the bacterial extract and incubated at 37 °C for 24 h. The extract having antimicrobial activity was signed with formation of inhibition zone around isolate. Diameter of inhibition zone was measured from the edge of the colony to the edge of the clear zone and recorded.

RESULTS AND DISCUSSION

Antimicrobial activity of crude extract and 3 fractions from flesh fruit of asam kandis

In this study, the crude extract of asam kandis fruit can inhibit 11 of 12 microorganism tests (Table 1). The antimicrobial activity was categorized as broad spectrum antimicrobial activity. On the basis of the result, preservative activity of asam kandis fruit is probably caused by antimicrobial activity.

When it was partitioned, the fraction showing antimicrobial activity is ethyl acetate fraction and methanol dissolved fraction. The crude extract and methanolic and ethyl acetate fractions showed similarity in inhibition of the number and species of tested microorganisms inhibited even though it differed in average diameter of clear zone.

Fractionation of crude extract by n-hexane and ethyl acetate increased antimicrobial activity of ethyl acetate fraction especially on Citrobacter freundii. This suggest that the fractionation removed others chemical compound which have antagonism of various compounds on each other. The antagonistic interactions are showed that the combine activity of two or more chemical compounds is lower than their individual activities (Nelson and Kursar, 1999).

The active compound of antimicrobial from flesh fruit of asam kandis might be semipolar compound which dissolved in ethyl acetate solvent. On the basis phytochemical screening and antimicrobial activity, ethyl acetate fraction will be used to further purification.

Generally, the larger the inhibition zone that forms the greater the antimicrobial activity. However, polarity of compounds shows an important role in this case. The polar compound will diffuse easily into medium so that the clear zone is bigger. Non polar antimicrobial compounds are difficult to spread into medium so that it will give lower clear zone.

Phytochemical Screening

The phytochemical screening showed each fraction containing various class of compound. However, the ethyl acetate fraction exhibited interested compound class namely: alkaloid, flavonoid, phenolic, and saponin (Table 2). Phytochemical screening exhibits different distribution of compound groups in each fraction (Table 2).

<table>
<thead>
<tr>
<th>Microorganism Test</th>
<th>Gram</th>
<th>B. subtilis</th>
<th>S. aureus</th>
<th>B. cereus</th>
<th>L. monositogenes</th>
<th>Bacillus sp.</th>
<th>Enterobacter sp.</th>
<th>K. pneumoniae</th>
<th>Salmonella sp.</th>
<th>E. coli</th>
<th>V. cholerae</th>
<th>C. freundii</th>
<th>C. albicans</th>
</tr>
</thead>
<tbody>
<tr>
<td>The crude extract</td>
<td></td>
</tr>
<tr>
<td>n-Hexane fraction</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Methanolic fraction</td>
<td></td>
<td>10.34</td>
<td>8.08</td>
<td>9.65</td>
<td>10.40</td>
<td>8.98</td>
<td>9.58</td>
<td>12.89</td>
<td>9.63</td>
<td>16.01</td>
<td>-</td>
<td>10.39</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Antimicrobial activity of various fractions of asam kandis (500 μg/well)

<table>
<thead>
<tr>
<th>Class of compound</th>
<th>Methanolic fraction</th>
<th>Ethyl acetate fraction</th>
<th>n-hexane fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaloid</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Flavonoid</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Phenolic</td>
<td>++</td>
<td>++</td>
<td>-</td>
</tr>
<tr>
<td>Saponin</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: (+) present; (-) absent
Phenolic group seems to distribute into 2 fractions namely n-methanolic and ethyl acetate which are responsible for antimicrobial activity. It proved that n-hexane fraction do not contain phenolic group so that it is not active against tested microorganisms. The presence of phenolic group in plants is to protect them from microbial, insect, and herbivores damage (Cowan, 1999).

Antimicrobial activity of sub fractions fractionated by vacuum column chromatography and gravity column chromatography

Ethyl acetate fraction was separated by vacuum column chromatography so that was produced 6 sub fractions (Table 3). Sub fraction E and F are active toward *Escherichia coli*, *Bacillus subtilis* and *Candida albicans*. The best antimicrobial activity between sub fraction E and F is E if it compared to diameter of clear zone.

![Table 3: Antimicrobial activity of sub fractions resulted by vacuum column chromatography (300 μg/well).](image)

<table>
<thead>
<tr>
<th>Sub Fraction</th>
<th>Average Diameter of Clear Zone (mm)</th>
<th>Tested Microorganisms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>E. coli</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>E</td>
<td>10.28</td>
<td>10.51</td>
</tr>
<tr>
<td>F</td>
<td>8.58</td>
<td>7.20</td>
</tr>
</tbody>
</table>

* = no clear zone

Sub fraction E re-fractionated by gravity column chromatography was obtained E₁, E₂, E₃, E₄, E₅, and E₆ (Table 4). E₄ only inhibits growth *C. albicans*. On the basis of this result, the crude extract and fraction contain more than one antimicrobial substance, which each the substance has responsible at certain tested microorganisms. After the second fractionation, the fraction contains fewer the number of substances but the concentration each substances is increase.

Therefore, lower the concentration E₄ put on the well still active against *C. albicans* which is categorized as narrow spectrum. The substances contained E₄ are possibly categorized as flavonoid.

CONCLUSION

Asam kandis fruit is potential as preservative agent. One of mechanism to preserve food due to antimicrobial activity. Antimicrobial activity of the extract and fraction is categorized as a broad spectrum but sub fraction E₁ can only active against *C. albicans* and categorized as narrow spectrum. The compounds which are responsible for antimicrobial activity were categorized as flavonoid.

ACKNOWLEDGEMENT

The authors acknowledge our gratitude to Indonesian Ministry of Nasional Education, for fully supporting this research activity through Competitive Research, contract number :3167a/H.22.13/LK/2012 on 5 March 2012.

REFERENCES

Palakawong, C., Sophanodara, P., Pisuchpen, S., Pongpaichit, S., Antioxidant and antimicrobial activities of crude extract from mangosteen (*Garcinia mangostana* L.) part and some essential oils. Int.Food Research J. 2010; 17:583-589

How to cite this article: