Evaluation of Effects of Different Concentrations of Lead, Alcohol and Vitamin E on Protein Carbonyl Content of Brain Tissue in Rats

Anusuya MR and Kiran B

ABSTRACT

The lead treatment was characterized by increase (28%) in protein carbonyl content 5.19, but the increase was not significant. In alcohol treated rats, the protein content was 5.52 nmol/gram of brain tissue of rat. The increase (36%) was significantly higher when compared to lead treated rats. The protein carbonyl content (6.39 nmol/gram) was further increased in rats coexposed to alcohol and lead, and the values ranged from 5.40 to 8.20 nmol/gram. The percent increase in protein carbonyl content was 57% in rats coexposed to alcohol and lead. Thus, the magnitude of deleterious effects of oxidative stress on protein oxidation is more significant in combined treatment group when compared to lead alone treated rats and alcohol alone treated rats. The lead treatment was characterized by a significant increase (37%) in protein carbonyl content (6.19 nmol/gram). In alcohol treated rats, the increase in protein carbonyl content (6.79 nmol/gram) was more marked (51%) when compared to lead treated rats. The protein carbonyl content was significantly increased (73%) in rats coexposed to alcohol and lead, and the values ranged from 6.80 to 8.56 nmol/gram (7.76 nmol/gram).

Keywords: Lead, Alcohol, Vitamin E, Protein, Brain tissue.

INTRODUCTION

Lead (Pb) is a ubiquitous heavy metal. Its exposure mainly occurs through the respiratory and gastrointestinal systems. Absorbed Pb (whether inhaled or ingested) is stored in soft tissues. Autopsy studies of Pb-exposed humans indicate that liver tissue is the largest repository (33%) of Pb among the soft tissues followed by kidney cortex and medulla (Veen et al., 2011). Effects of lead on nervous system depend on the duration of exposure and its intensity, which could be assessed by concentrations of lead in the blood. Children are particularly susceptible to toxic lead effects on central nervous systems. Elevated blood lead level impairs both physical and intellectual development in children. Effects of high blood lead concentrations are widely discussed (Kniecik-Malecka et al., 2009).
Low-level exposures to lead, resulting in blood lead levels previously considered normal, may cause cognitive dysfunction, neurobehavioral disorders, neurological damage, hypertension, and renal impairment. The pathogenesis of lead toxicity is multifactorial, as lead directly interrupts enzyme activation, competitively inhibits trace mineral absorption, binds to sulfhydryl proteins (interrupting structural protein synthesis), alters calcium homeostasis, and lowers the level of available sulfhydryl antioxidants reserves in the body (Lyn, 2006). Lead-induced oxidative stress contributes to the pathogenesis of lead poisoning for disrupting the delicate prooxidant/antioxidant balance that exists within mammalian cells. Production of reactive oxygen species (ROS) is increased after lead treatment in vitro studies, moreover other studies in vivo suggest that lead exposure cause generation of ROS and alteration of antioxidants defense system in animals (Hassan and Jassim, 2010). In the present investigation, lead, alcohol and Vitamin E was fed to rats individually and in combination and its effect its effect on protein content in brain tissue of rat was analyzed.

MATERIALS AND METHODS

Test Animal
Male Sprague Dawley rats weighing around 150 grams at the age of three months old were used in this study. The animals were housed in polypropylene cages under hygienic conditions and feedings were done using rat pellet diet (Hindustan Lever Limited) and water ad libitum. Permission was taken from ethical committee to conduct experiment with its reference number CPCSEA/CH/org/2000/241.

Treatment of rats with Lead, Alcohol and Vitamin E
The test animals were divided into eight groups and each group consists of six animals. Group I acts as control receiving water. Group II were treated with lead acetate at 160mg/l concentration dissolved in water. Group III animals were treated with 10% alcohol. Group IV animals were treated with 160 mg/l concentration of lead acetate and 10% alcohol. Group V animals served as control treated with Vitamin E/kg diet. Group VI animals were treated with lead acetate at 160mg/l concentration dissolved in water and Vitamin E/kg diet. Group VII animals were treated with 10% alcohol and Vitamin E/kg diet. Group VIII animals were treated with 160 mg/l concentration of lead acetate, 10% alcohol and Vitamin E/kg diet (AL-Jobory STA, 2006; Alkatan M, 2006).

Chemicals used
Alkaline copper reagent Solution A (2% sodium carbonate in 0.1 N NaOH solution in distilled water). Solution B (0.5% copper sulphate in 1.0% sodium potassium tartarate). 50.0 ml of solution A was mixed with 1.0ml of solution B just before use. Folin’s phenol reagent (The reagent was obtained commercially). One volume of Folin’s phenol reagent was diluted with 1 volume of distilled water just before use. Standard bovine serum albumin (BSA) (20.00 mg of BSA was dissolved in 100 ml distilled water).

Few drops of NaOH was added to aid complete dissolution of BSA and to avoid frothing. It was allowed to stand overnight. 10ml of the stock was diluted to 100ml to get a working standard (200 µg/ml).

Estimation of total protein carbonyl content
The protein content was determined by Folin’s phenol (Lowry et al., 1951) method using bovine serum albumin as standard. 0.1ml crude homogenate was used for protein extraction. The protein was extracted by mixing with 5% cold trichloroacetic acid and centrifuged. The pellet was solubilized with 0.5 N sodium hydroxide and stored overnight at room temperature. After neutralization with 0.5 N HCl, 0.2 ml of diluted solution and different concentrations of standard were taken. The volume was made up to 1.0 ml with distilled water. Blank contained 1.0 ml distilled water. To all the tubes 5.0 ml alkaline copper reagent was added and left at room temperature for 10 Min. 0.5 ml of folin’s phenol reagent was added and the blue color developed was read after 20 minutes at 660nm against reagent blank in a spectrophotometer. Protein concentration is expressed as mg/gm of wet brain tissue.

RESULT

Protein carbonyl content for four weeks
In four hours of treatment, lead treated rats recorded 5.19 nmol/gram of protein in brain tissue of rats. In alcohol treated rats, the protein carbonyl content was 5.52nmol/gram and in lead combined with alcohol treatment, it was recorded 6.39 nmol/gram. Compared to control, it was recorded 4.07 nmol/gram of tissue. When treated with vitamin E, the protein carbonyl content was 4.06nmol/gram and in lead with vitamin E treated rats, it was recorded 4.85 nmol/gram. In alcohol with vitamin E treated rats, it was recorded 5.14 and in lead with alcohol and vitamin E treatment, the protein carbonyl content was 5.68nmol/gram of brain tissue (Table 1 and Figure 1).

Fig. 1: Protein carbonyl content in rats treated for four weeks with lead, alcohol and lead with alcohol, with and without vitamin E.
The shellfish toxin okadaic acid reduces protein synthesis by depleting 43S preinitiation complex elF4E (Lange et al., 2001). Muscle and liver respond differently with respect to these subcellular changes (Lange et al., 2000). In skeletal muscle, reductions in protein synthesis may be an initiating factor in the pathogenesis of the disease entity alcoholic myopathy (Reilly et al., 1995). However, cellular factors for initiating the reductions in tissue protein synthesis in alcohol toxicity are unknown, although consideration must be given to the excessive generation of reactive oxygen species (ROS), leading to enhanced lipid peroxidation and/or membrane damage (Adachi et al., 2000). Two cholesterol-derived hydroperoxides, 7α-hydroxyperoxycholesterol-5-en-3β-ol (7α-OOH) and 7β-hydroxyperoxycholesterol-5-en-3β-ol (7β-OOH), were significantly elevated in both soleus and plantaris muscle of rats. Numerous studies have also implicated the generation of ROS and/or enhanced lipid peroxidation in the pathogenesis of reduced tissue protein synthesis. The shellfish toxin okadaic acid reduces protein synthesis in cultures of vero cells, by a mechanism involving increased lipid peroxidation (Matias et al., 1999). In metabolically degenerated neuronal tissue in vitro and liver tissue slices, there were also decreased in protein synthesis in response to enhanced lipid peroxidation (Uto et al., 1995). In the present study, the protein carbonyl content was higher in eight weeks of treatment compared to four weeks of treatment. In eight weeks of treatment, there is increase in protein content in lead(1.02%), alcohol(1.10%) and in lead with alcohol treatment, the percentage of increase in upto 1.38%. From the present study, it can be concluded that as the duration of treatment increases the protein carbonyl content goes on increasing. A further work in necessary to determine the mode of action of lead, alcohol and vitamin E on the brain tissue of rats.

ACKNOWLEDGEMENT

The authors are thankful to Kempegowda Institute of Medical Sciences (KIMS) Banashankari 2nd Stage, Bangalore and CMR Institute of Management Studies (Autonomous), PG Department of Biosciences, Kalyan Nagar, Bangalore for providing facilities.

REFERENCES

AL-Jobory STA. Reproductive efficiency of sucking rats treated with lead acetate during lactation :Role of vitamin E. MSc. Thesis college of Veterinary Medicine, University of Mosul, 2006.

Hassan AA., Jassim HM. Effect of treating lactating rats with lead acetate and its interaction with vitamin E or C on neurobehavior, development and some biochemical parameters in their pups. Iraqi Journal of Veterinary Sciences2010;24(1):45-52.

