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ABSTRACT 
PIM-1 kinase (PIM-1K) modulates multiple cellular functions and is evolving as a drug target for cancer. In search of 
potential PIM-1 inhibitors, we report herein the 3D-QSAR as well as docking studies on 3-(pyrazin-2-yl)-1H-indazole 
derivatives. Based on the 3D-QSAR study, the generated pharmacophore was utilized for the virtual screening of 
thousands of compounds (compds) from ZINC database against PIM-1K. Four top-ranked compds, ZINC05885218, 
ZINC05888770, ZINC08652441, and ZINC73096248, were selected by virtual screening study. The study results 
of molecular docking suggested that certain key residues were significant for interactions of ligand–receptor due to 
the formation of hydrogen bonds with Glu171, Glu121, Lys67, Asp128, Asp131 and Asp186 of PIM-1K. Virtually 
screened compds displayed resemblance in binding interactions within the PIM-1Ks catalytic pocket in comparison 
with their corresponding crystal structures. The ADRRR.2 emerged as the potential pharmacophore hypothesis and 
was employed for the generation of model of 3D-QSAR which gave good statistical values of q2 and r2 using partial 
least square analyses (r2 = 0.922, q2 = 0.8629) for the best model. The study results revealed that ZINC73096248 could 
serve as a prototype compd for developing novel PIM-1K inhibitors. 

INTRODUCTION 
PIM kinases (PIM-Ks) are significant serine/threonine 

kinases which are widely used in cellular transcription as well as 
translation (Cuypers et al., 1984). They occur generally in three 
distinct isoforms: PIM-1 kinase (PIM-1K), PIM-2K, and PIM-3K. 
These isoforms have similar functions and are involved in cell 
processes like multiplication, differentiation, and apoptosis (Fox 
et al., 2003). These PIM-Ks show weak oncogenic activity in their 
transgenic forms but exhibit increased activity when expressed 
along with c-Myc, a transcription factor (Forshell et al., 2011; 
Zhang et al., 2008). Alteration in the PIM-K pathway is associated 
with hematological malignancies or solid tumors (Brault et al., 

2010). Interestingly, PIM-1 and 2 are progressively expressed 
in multiple myeloma, lymphomas, and leukemia, whereas PIM-
3 is predominantly predicted in the tumors of colon, pancreas, 
prostate, and some other organelles (Nawijn et al., 2011). 
Moreover, the deficiency of PIM-1K leads to failure in cell growth 
and survival. Nevertheless, PIM-1K is linked to drug resistance 
and is associated with cancer metastasis, immunotherapy, and 
epigenetic dynamics (Tursynbay et al., 2016). Consequently, 
PIM-Ks are promising therapeutic targets in drug development for 
cancer treatment (Asati et al., 2014). The in vivo study on mice 
proved that the inhibition of these kinases produced minimum side 
effects (Mikkers et al., 2004). Different inhibitors of PIM-K, for 
example, SGI-1776, AZD1208, and SMI-4a, were studied against 
chronic lymphocytic leukemia cells, solid and hematological 
cancers. However, AZD1208 is under clinical trials (Cervantes-
Gomez, et al., 2016; Cortes et al., 2018). In one study carried 
out, Wang et al. (2015) reported 3-(pyrazin-2-yl)-1H-indazole 
derivatives as potential PIM-K inhibitors. Furthermore, Xu et al. 
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(2014) have synthesized pyrazolo[1,5-a]pyrimidine derivatives 
as selective inhibitors of PIM-1K. Keeping the above-mentioned 
facts in mind, the present study was carried out on a series of 
pyrazine-linked indazoles to discover the structural requirements 
as potent PIM-1 inhibitors.

MATERIAL AND METHODS

Data set and Pharmacophore modeling
A data set of 29 compds belonging to 3-(pyrazin-

2-yl)-1H-indazoles as inhibitors of PIM-1K were taken 
for pharmacophore generation, 3D-QSAR, and docking 
performances. The chemical structures of the above-mentioned 
series were selected from reported literature (Wang et al., 2015). 
Different pharmacophore hypotheses were created by using this 
series, which were subsequently utilized for the 3D-QSAR model 
creation. The training and test set molecules general selection 
are given in Table 1. The 3D-QSAR model generation and 
pharmacophore modeling were carried out by utilizing PHASE 
module of Schrodinger (Dixon et al., 2006). 

Ligand preparation
In this module, prepared structures of compds were used 

and processed for wizard (Ligprep, version 2.5, Schrodinger, NY, 
2012). The activity of all molecules was added manually with 
their pIC50 values. 2D structures were converted into 3D structures 
through cleanup wizard (Watts et al., 2010). The alignment of all 
the 29 ligands are shown in Figure 1a. Subsequently, conformer 
generation was carried out by ConfGen macromodel search method 
with the application of OPLS-2005 force field (Schrodinger, 
LLC, 2015). All the molecules were distributed into a training set 
comprising 24 molecules and a test set of 5 molecules through 
leave-one-out process. The validation of created models was 
carried out by utilizing test set. A random activity threshold value 
was given to split training set molecules into 12 actives (pIC50> 
8.6), 11 intermediates (8< pIC50< 8.6), and 6 inactives (pIC50< 8). 

Pharmacophore sites Creation and Score hypothesis
The pharmacophoric features were defined by specific 

SMARTS patterns and common pharmacophores were examined 
from 12 actives (4.4 version of PHASE, Schrodinger, 2012). 

Table 1. Experimental and predicted activity data for training and test set compds (PLS factors = 5).

Compd QSAR set Experimental Activity (pIC50) Predicted activity (pIC50) Pharm set

1 TR 7.3 6.896 INACT

2 TR 8.5 8.523 Intermediate

3 TR 8.58 8.699 ACT

4 TR 7.9 7.959 INACT

5 TR 7.85 7.959 INACT

6 TR 8.17 8.155 Intermediate

7 TR 7.19 7.357 INACT

8 TR 8.99 8.699 ACT

9 TE 8.58 8.699 ACT

10 TR 8.6 8.523 Intermediate

11 TE 7.9 7.824 INACT

12 TR 8.07 8.097 Intermediate

13 TE 8.55 8.155 Intermediate

14 TR 8.53 8.523 Intermediate

15 TR 9.05 9.398 ACT

16 TR 8.86 8.523 Intermediate

17 TR 9.08 9.046 ACT

18 TR 8.87 8.796 ACT

19 TE 8.3 8.398 Intermediate

20 TR 8.54 8.699 ACT

21 TR 8.55 8.398 Intermediate

22 TR 8.42 8.523 Intermediate

23 TR 7.72 7.824 INACT

24 TR 8.33 8.523 Intermediate

25 TR 9.5 9.699 ACT

26 TR 9.41 9.398 ACT

27 TR 9.3 9.301 ACT

28 TR 9.06 8.854 ACT

29 TE 9.32 9.523 ACT

TR = Training; TE = Test; INACT = Inactive; ACT = Active.
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Hypotheses were grouped based on the resemblance in identical 
and variant scores (Table 2). The actives with acceptable fitness 
scores were carefully chosen and further employed for the 
3D-QSAR model creation (Kamaria and Kawathekar, 2014; 
Sallam et al., 2013). 

3D-QSAR data setting
On the basis of aligned ligands of selected hypothesis, 

the 3D-QSAR models were generated. In the following study, a 
total of six pharmacophore models were carefully chosen for the 
final 3D-QSAR models development (Golbraikh and Tropsha, 
2002; Lather et al., 2008). These 3D-QSAR models help in 
elucidation of SAR of all compds (Shah et al., 2010).

Virtual screening
The pharmacophore (ADRRR) used for study and 

different libraries, like NCI (National Cancer Institute) and ZINC 
(2.5 million commercially available compds), were used for the 
virtual screening studies (Irwin and Shoichet, 2005). Lipinski rules 
of five were applied to choose the drug like compds to develop the 
potential inhibitors (Lipinski et al., 2001).

Molecular docking 
Docking studies on binding site of PIM-1K for 

3-(pyrazin-2-yl)-1H-indazoles were accomplished by Glide v3.8 
module of Schrodinger, NY (Friesner et al., 2004, 2006; Halgren 

et al., 2004; Sliwoski et al., 2014). Protein data bank was used 
to obtain the PIM-1Ks (PDB ID: 2XJ1) crystal structure (Protein 
preparation wizard Schrodinger, 2012). Another comparative 
study of 3-(pyrazin-2-yl)-1H-indazoles was carried out on PIM-
1Ks crystal structure by Autodock Vina module (Seeliger and 
Groot, 2010).

MM/GBSA-based rescoring and enrichment calculation
This approach was employed to compute the binding 

free energy of compds to attain a better estimation of binding 
powers/strengths and relative potencies for PIM-1K inhibitory 
activity (Sun et al., 2014). The validation of virtual screening 
protocols was carried out by computing their enrichment factors 
as well as receiver operating curve (ROC) analysis (Hamza et al., 
2012; Sierra et al., 2015). 

ADME analysis
The compds were subjected for their ADME analysis to 

determine the drug-likeness properties by using QikProp module, 
version 4.3, Schrodinger, New York, 2015 (Becke, 1993; Lee et 
al., 1988). 

RESULTS AND DISCUSSION

Pharmacophore modeling
In 133 pharmacophore hypotheses of 62 variant, only 6 

(AADRR.8, ADRRR.2, ADRRR.15, ADRRR.62, AARRR.2, and 

Figure 1. (a) Alignment of 29 molecules of 3-(pyrazin-2-yl)-1H-indazole derivatives; (b) compd 25 aligned with AADRR;  (c) ADRRR; and (d) AARRR. 

Table 2. Various hypotheses created by PHASE/scoring results.

S. No. CPHs Survival Survival-inactive Site Vector Volume Matches

1 AADRR.8 3.852 1.039 1 1 0.857 1.439

2 ADRRR.2 3.829 1.03 0.99 0.995 0.839 1.64

3 ADRRR.15 3.819 1.02 0.99 0.983 0.841 1.645

4 ADRRR.62 3.818 1.02 0.99 0.983 0.841 1.687

5 AARRR.2 3.817 1.023 0.99 0.983 0.842 1.562

6 AADRR.69 3.785 0.991 0.98 0.953 0.853 1.467
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AADRR.69) were selected (Table 2) for the development of the final 
QSAR model. These hypotheses include only three variants with 
different pharmacophoric features which display best alignment 
of actives representing top scoring hypotheses. Figure 1b–d shows 
the alignment of compd 25 (most active) with the highest scoring 
hypothesis (AADRR, ADRRR, and AARRR) from each of the 
three variants, respectively. The created hypotheses effectively 
recognized utmost significant pharmacophoric features suggested 
for the anticancer potential of 3-(pyrazin-2-yl)-1H-indazoles: A1 
containing nitrogen atom, R for aromatic ring, and hydrogen bond 
donor (HBD) at D5. The deprivation of any of these structural 
features would compromise the anticancer potential. 

3D-QSAR study 
To develop a correlation among 3D spatial arrangement 

of the pharmacophoric features and anticancer activity of 
3-(pyrazin-2-yl)-1H-indazoles (Table 3), the best 3D-QSAR 
model was created. Pharmacophore hypotheses were employed 
for the alignment of compds to build atom-based 3D-QSAR 
models through partial least square (PLS) method. The best 
generated 3D-QSAR model was based on the alignment of 
ADRRR.2 pharmacophoric features with the most active molecule 
(Fig. 2a). Table 4 shows the details of the best model of 3D-QSAR 
including three PLS factor model having excellent statistics 
as well as predictive capability as depicted from r2 = 0.922, q2 

= 0.8629, and Pearson R = 0.9393 values. The model’s validity 
was expressed by internal predictivity (q2) which can be acquired 
by leave-one-out (LOO) method. The q2 obtained through LOO 
method is statistically robust and more reliable as compared to 
r2 as it is acquired by internal validation method. The high F 
value (78.8) designates a significant statistical regression model 
supported by small variance ratio (p = 2.985e-011), which denotes 
a high level of confidence. Smaller values of SD of regression 
(0.1929) and RMSE (0.214) provided an apparent suggestion 
that data which were used to create model in QSAR analysis are 
the best. A good correlation was obtained among estimated and 
actual anticancer activity (Table 1). The scatter plots between 
the estimated versus actual activities displayed that pIC50 values 
are efficiently speculated for training and test set molecules 
(Fig. 3a,b). The study results of 3D-QSAR can be seen in Figure 
2b–d. Blue blocks present in the pharmacophore model (3D) 
denote the ligand regions in which particular structural attribute 
is essential for better activity, while red blocks refer that certain 
structural attributes are not important for activity. Here compd 25 
is the most active inhibitor containing several substituents which 
affects various features, like HBD, electron-withdrawing, and 
hydrophobic effects. Introducing HBD and electron-withdrawing 
groups (EWGs) at ring (R17) lead to increased PIM-1K inhibition. 
The incorporation of EWGs on pyrazine ring causes decreased 
inhibition. The presence of hydrophobic groups showed different 
effects on various positions of these compds in which introduction 
on R17 is beneficial for activity, but on pyrazine ring the activity 
depends on ortho, para, and meta substitution.

Molecular docking studies
The active molecule 25 with receptor cavity is shown 

in Figure 4a. Here, indazole NH group was found engaged in 

hydrogen bond interaction with Glu121 in the hinge region. The 
Azaspiro group showed interaction with Asp186 and Glu171, 
essential for activity. The amine group of phenyl ring showed 
interaction with Asp131. The extra precision (XP) Gscore of 
compd 25 was −11.084. All these study data revealed the essential 
interactions for the ligand with the receptor for better PIM-1K 
inhibition. Another study for determining the PIM-1K and ligand 
interaction was established by carrying out molecular docking 
using the software Autodock Vina. The most active compd 25 
binds with different sites on PIM-1K giving information for 
further structural optimization of active compds. The binding 
site (Fig. 4b) validates the previous study where different amino 
acid residues (AARs) like Lys67, Glu171, Glu121, and Asp128 
were proven to be essential for activity (Asati et al., 2018). The 
lowest value of RMSD 2.067 Å as well as binding affinity −9.4 
kcal/mol proved better PIM-1K inhibitory activity. The hydrogen 
bond distance between Glu171, Glu121, and Asp128 to -NH were 
consecutively 3.3, 3.3, and 2.9 Å. When compd 1 docked with 
the PIM-1K, it showed only one interaction with Glu121 AAR 
(Fig. 4c). This interaction has 0.1 Å, the lowest RMSD value 
with −10.9 kcal/mol binding affinity evidenced least PIM-1K 
inhibitory activity. The top virtually hit compds, ZINC05885218, 
ZINC05888770, ZINC08652441, and ZINC73096248 exhibited 
best XP binding affinity with identical binding interactions to 
the receptor 2XJ1 evidenced by crystallographic ligand. These 
compds were showed similar binding attributes with the AARs 
Glu121, Lys67, Glu171, and Asp128 which are mandatory for 
PIM-1K inhibition. Three residues of PIM-1K, such as Glu124, 
Val126, and Ser54, adjacent to ATP-binding site also distinguished 
PIM-1K from PIM-2K. ZINC05885218 and ZINC05888770, and 
ZINC08652441 and ZINC73096248 displayed hydrogen bond 
interaction of -NH group with Glu121, important site for the PIM-
1K inhibition (Fig. 5). 

MM/GBSA-based rescoring
The Van der Waals (VDWs) interaction was present in 

docked compds between −33.06 and −54.86 kcal/mol. Similarly, 
Coulomb energy found in docked complexes fluctuated between 
positive and negative ranges, where ZINC73096248 showed 
−103.96 kcal/mol. The complex energy for all compds was found 
in the negative range between −11,335.46 and −11,403.11 kcal/
mol, which evidently indicated that important interactions were 
VDWs forces. However, the best binding with ∆Gbind was 
found at −55.02 kcal/mol for the top scored (XP docking) compd 
ZINC73096248 (−7.256 kcal/mol), which also exhibited higher 
Coulomb energy (−103.96 kcal/mol), and a slightly higher VDWs 
contribution (−35.76 kcal/mol) with complex energy (−11,368.68 
kcal/mol). Henceforth, it is apparent that non-polar VDWs 
interactions are the principal driving force for binding the ligand 
in the PIM-1Ks catalytic pocket (Table 5).

Estimation of the virtual screening efficiency
The present study finds the best protocol for the 

maximum active compd enrichment at the top 5% (6) of the given 
database. The retrieval of active compds incorporated into the 
decoy set is presented in Table 6. The actives exhibited enrichment 
factor with 0.97 ROC and 0.97 AUC.
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Table 3. Anti-proliferative potentials of compds 1–29 against PIM-1K.

Compd No. R Antiproliferative activity (IC50, µM) Antiproliferative activity (pIC50, µM)

1 127 6.896

2 3 8.523

3 2 8.699

4 11 7.959

5 11 7.959

6 7 8.155

7 44 7.357

8 2 8.699

9 2 8.699

10 3 8.523

Continued
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Compd No. R Antiproliferative activity (IC50, µM) Antiproliferative activity (pIC50, µM)

11 15 7.824

12 8 8.097

13 7 8.155

14 3 8.523

15 0.4 9.398

16 3 8.523

17 0.9 9.046

18 1.6 8.796

19 4 8.398

20 2 8.699

21 4 8.398

22 3 8.523

23 15 7.824

24 3 8.523

Continued
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Compd No. R Antiproliferative activity (IC50, µM) Antiproliferative activity (pIC50, µM)

25 0.2 9.699

26 0.4 9.398

27 0.5 9.301

28 1.4 8.854

29 0.3 9.523

Table 4. Statistical parameters of the best atom-based 3D-QSAR model generated by PHASE.

Hypothesis PLSa SD r2b Fc P Stability RMSE q2d Pearson-R

ADRRR.2

1 0.4798 0.4687 19.4 0.0002239 0.9094 0.3518 0.6297 0.8104

2 0.3346 0.7534 32.1 4.132e-007 0.6613 0.2748 0.7741 0.8899

3 0.1929 0.922 78.8 2.985e-011 0.3473 0.214 0.8629 0.9393

4 0.144 0.9587 110.2 7.197e-013 0.3847 0.2387 0.8294 0.9144

5 0.1059 0.9788 166.4 2.055e-014 0.3724 0.2586 0.7999 0.8972

aFactors in PLS regression model.
br2 value for the regression.
cVariance ratio.
dq2 value for predicted activity of test set.

Figure 2. (a) Common pharmacophoric features of ADRRR.2; (b) the 3D-QSAR model (atom-based) for ADRRR.2; (c) HBD; and (d) hydrophobic effects.
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Figure 3. Scatter plots: (a) training set compd; (b) test set compd. 

Figure 4. (a) Binding interaction of compd 25 with the active site of PIM-1K (PDB ID: 2XJ1); (b) comparison of binding interaction of the most active compd 25 and 
crystal ligand with receptor cavity of PIM-1K (PDB ID:2XJ1); and (c) binding interactions of the least active compd 1 with PIM-1K receptor cavity.

Figure 5. Hydrogen bond interaction (yellow dotted lines) of compds (red colour) ZINC05885218, ZINC05888770, ZINC08652441, and ZINC73096248, with AARs 
Asp186, Lys67, and Glu121 of PIM-1K (PDB ID: 2XJ1), respectively.
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ADME analysis
The study results showed that pharmaceutical and 

physicochemical characteristics of all investigated compds were 
within the acceptable range. The partition coefficient (QPlogPo/w) 
is a crucial factor for absorption estimation, ranging from 2.36 to 
6.29, for the virtually screened compds. QPPCaco (cell permeability), 
a significant aspect for metabolism of drug, was found between the 
range of 284.41–2,143.89, and QPPMDCK ranged from 282.74 to 
1,128.08. Generally, oral absorption percentage in humans for the 
screened compds was in the range of 81%–100%. The pharmacokinetic 
parameters for the screened compds were found within a permissible 
range (Table 7), thus interpreted as drug-like molecules.

CONCLUSION
The current study highlights the structural requirements 

of 3-(pyrazin-2-yl)-1H-indazole derivatives for the inhibitory 

activity against PIM-1K. The study results indicated that the 
incorporation of strong EWGs into pyrazine ring linked to indazole 
ring lead to a decreased PIM-1K inhibitory activity. Results of 
molecular docking of screened compds exhibited identical binding 
interactions within the PIM-1Ks catalytic pocket in comparison 
with their corresponding crystal structures. In conclusion, it is 
inferred that the acquired study results may serve as a guide for 
designing novel PIM-1K inhibitors, which could be an effective 
way to discover novel leads for the development of more active as 
well as safer anticancer agents/drugs. 
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Table 5. Rescoring of virtually screened compds based on MM/GBSA.

Compds dG_Bind dG_Bind_vdW dG_Bind_Hbond Ligand Strain 
Energy Complex Energy Ligand_ 

Energy dG_Bind_Coulomb

ZINC05885218 −38.73 −54.86 −1.39 10.11 −11,403.11 -37.24 −17.69

ZINC05888770 −21.28 −33.06 −0.26 4.10 −11,335.46 12.95 70.03

ZINC08652441 −52.44 −34.24 −1.02 9.17 −11,361.29 18.29 −98.74

ZINC73096248 −55.02 −35.76 −1.55 9.88 −11,368.68 13.47 −103.96

Table 6. Enrichment factor calculation

Compds Specificity 1-Specificity Sensitivity %Screen %Actives Found

1 0.97 0.03 0.17 2.88 16.67

2 0.97 0.03 0.33 2.98 33.33

3 0.97 0.03 0.50 3.08 50.00

4 0.97 0.03 0.67 3.18 66.67

5 0.97 0.03 0.83 3.28 83.33

6 0.97 0.03 1.00 3.38 100.00

Table 7. Virtually screened compds (ADME and drug-likeness properties).

Compds Mol_
MW SASAa HB donor HB accpt QPlogPo/wb QPlogHERGc QPPMDCK QPPCacod QPlogKhsae

Percent 
Human Oral 
Absorptionf

ZINC05885218 380.45 673.84 2.00 4.25 4.94 −7.05 1,103.16 2,100.02 0.89 100.00

ZINC05888770 350.42 627.10 2.00 3.50 4.79 −6.95 1,128.08 2,143.89 0.85 100.00

ZINC08652441 261.28 486.19 2.00 3.50 2.36 −5.29 300.96 631.40 0.06 90.91

ZINC73096248 620.67 922.75 4.00 7.20 6.29 −7.01 282.74 284.41 1.36 81.77

1 379.47 633.01 3 5 2.853 −5.94 30.87 575.97 −0.05 74.02

2 273.22 433.54 1 3 2.364 −3.85 1,588.66 49.81 0.50 90.19

3 405.42 613.48 1 5 4.08 −5.72 1,223.0 690.69 0.59 100

4 440.46 690.84 3 6 4.02 −6.47 337.75 223.21 0.71 92.54

5 461.94 666.98 1 8 3.19 −5.82 102.15 152.06 0.48 84.68

6 303.37 522.46 3 5 1.17 −4.93 27.305 44.55 −0.01 63.32

aTotal solvent accessible surface area (SASA) in Å2 (range: 300–1,000).
bPredicted octanol/water partition coefficient (range: −2.0–6.5).
cPredicted blockage of hERG K+ channel (reasonable value <−8).
dPredicted Caco-2 cell permeability in nm/second.
ePrediction of human serum albumin binding (range: −1.5 – 1.5).
fPredicted human oral absorption on 0–100% scale.

The authors declared that they have no conflicts of interest.
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