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ABSTRACT 
Given the increasing role of P90 Ribosomal S6 Kinase 2 (RSK2) as an anticancer drug target, we performed 
3D-Quantitative structure–activity relationship, including comparative molecular field analysis (CoMFA) and 
comparative molecular similarity indices analysis (CoMSIA) on difluorophenol pyridine derivatives as the inhibitor 
of RSK2. CoMFA model with q2 of 0.597 and R2 of 0.993, while CoMSIA model with q2 of 0.563 and R2 of 0.993, 
were obtained. The predictive ability of both models was assured using a test set compound with R2

pred values of 0.996 
each. Using the validated models, novel compound was proposed and its interaction with RSK2 was investigated 
employing molecular docking and molecular dynamics simulation of 50 ns. Furthermore, molecular-mechanics 
Poisson–Boltzmann surface area calculation was performed. The result showed that the newly designed compound 
has a comparable binding free energy with the known RSK2 inhibitor, indicating its potential as a new RSK2 inhibitor.

INTRODUCTION
The p90 ribosomal S6 kinases (RSK) is a serine/threonine 

kinase consisting of four closely related isoforms, i.e., RSK1, RSK2, 
RSK3, and RSK4; all of which have N-terminal kinase domain 
(NTKD), a conserved regulatory linker domain, and C-terminal 
kinase domain (CTKD) (Anjum and Blenis, 2008; Carriere et al., 
2008; Casalvieri et al., 2017; Romeo et al., 2012; Sulzmaier et al., 
2016). The RSKs are involved in activating a range of substrates 
responsible for cell cycle control, motility, and cell survival and 
are a part of the Ras/Raf/MEK/ERK pathway, which is widely 
overexpressed in many types of cancer (Casalvieri et al., 2017). The 
RSKs are activated by sequential phosphorylation at CTKD, linker 
domain, and NTKD (Casalvieri et al., 2017). The deregulation of RSK 
signaling was indicated in pre-neoplastic progression to neoplastic 
disease (Davies and Dunn, 2011; Reipas et al., 2013). In spite of 
high sequence homology (73%–80% amino acid identity), each 
RSK isoform can promote specific biological function. For example, 

RSK1 is primarily known for its involvement in cancer cell invasion 
and metastasis, while RSK2 was indicated as a lead molecular 
target for triple-negative breast cancer (Brough et al., 2011; Larrea  
et al., 2009; Smolen et al., 2010; Stratford et al., 2012; Reipas  
et al., 2013). Thus, RSK1 and RSK2 deserve important anticancer 
target. Reports have recorded the developed inhibitors working on 
ATP-binding site of the NTKD, such as SL0101, BI-D1870, and 
BIX 02565, while the other irreversibly binds to ATP-binding site 
of CTKD, including fluoremethylketone (Casalvieri et al., 2017; 
Houles and Roux, 2018). Although several RSK inhibitors have 
been identified, several issues remain, such as high clearance, short 
plasma half-life, and moderate tissue distribution (Houles and Roux, 
2018; Jain et al., 2015).

Jain et al. (2015) described optimization of a series 
of difluorophenol pyridine derivatives as RSK inhibitor by 
employing structure-based drug design, including crystallography, 
conformational analysis, and scaffold morphing. In the present study, 
new difluorophenol pyridine derivative was proposed using three-
dimensional quantitative structure–activity relationship (3D-QSAR) 
model of comparative molecular field analysis (CoMFA) and 
comparative molecular similarity indices analysis (CoMSIA). In 
addition, molecular docking and 50-ns molecular dynamics (MD) 
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simulations were conducted to study the interaction mechanism and 
conformational changes during the interaction of difluorophenol 
pyridine derivative and RSK2. The free energy calculation was also 
performed to confirm the reliability of CoMFA and CoMSIA model 
and to reveal the individual energy contribution in each complex.

MATERIALS AND METHODS
Data sets

All 21 difluorophenol pyridine series were obtained from 
Jain et al. (2015), in which 16 of them were grouped as training 

set to build models of the CoMFA and CoMSIA (Table 1). The 
remaining compounds were assigned as test set (superscript * in 
Table 1) to evaluate the built CoMFA and CoMSIA models. The 
inhibitory activity data which were reported in the half maximal 
inhibitory concentration (IC50) were transformed to the logarithmic 
scale pIC50 (−logIC50) to enhance the linearity of QSAR models, in 
which pIC50 values ranged from 5.3188 to 8.3979.

SYBYL-X 2.1 (Tripos Software, Saint Louis, MO) was 
used to build all 3D structures of ligands. Energy minimization 
was performed using Tripos force field, Powell method, and 
Gasteiger–Huckel charges (Awasthi et al., 2018; Clark et al., 1989). 

Table 1. The structures of difluorophenol pyridine series and their pIC50 values.

Comp
Subtituent

pIC50 (µM)
R1 R2

1* H 6.7447

2 F 7.301

3 F 7.2218

4* F 6.8861

5 F 5.6778

6 F 6.1079

7* F 7.4948

8 F 7.3372

9 F

O
NH2

8.3979

10 F 8.301
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The minimization was achieved when energy convergence met 
0.005 kcal/mol with 1,000 cycles maximum iterations. The other 
topomer CoMFA parameters were left at default values except for 
those specifically described. As the quality of 3D-QSAR CoMFA 
and CoMSIA models depends primarily on molecular alignment, 
alignment of molecules was performed on dataset molecules 
based on the best active compound as the template molecule  
(Compound 18).

CoMFA and CoMSIA
The models of CoMFA and CoMSIA were built using 

SYBYL-X 2.1 (Tripos Software, Saint Louis, MO). CoMFA steric 
field was developed based on van der Waals interaction using 
Lennard-Jones potential, while CoMFA electrostatic field was built 

using Coulombic potential. Both CoMFA fields were generated at 
each lattice point in a 3D grid box of 2.0 Å in all the three directions. 
The energy cut-off for both steric and electrostatic fields was set to 
30 kcal/mol (Wang et al., 2019; Stahle and Wold, 1988).

In the meantime, the CoMSIA steric (S), electrostatic 
(E), hydrophobic effects (H), and hydrogen bond donor (D) and 
acceptor (A) interaction fields were derived using a distance-
dependence Gaussian function (Klebe et al., 1994). The same 
training and test set were employed to derive CoMFA and CoMSIA 
models. The partial least squares (PLS) algorithm with leave-
one-out cross validation was employed to determine the optimal 
number of principal component (ONC), which was then used to 
correlate 3D structure of the compounds as independent variables 

Comp
Subtituent

pIC50 (µM)
R1 R2

11* F 7.7447

12 F 8.3979

13 F 7.0269

14 F 8.1549

15 F 8.0969

16* F 7.699

17 F 8.2218

18 F 8.301

19 F 8.3979

20 F 7.0969

21 Cl 5.3188

*Compounds in the test set.
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and biological inhibitory activities (pIC50) as dependent variable 
(Bush and Nachbar, 1993). The cross-validation correlation 
coefficient of q2 value was defined as:

∑
∑

( )

( )
= −

−

−
q

y y

y y
12

2

2

where, y and ŷ were observed and predicted biological activities 
of compound i, respectively, and ȳ is the mean observed activities 
of the training set compounds. The value of column filtering (σ) 
was set to lower than 2.0 kcal/mol to reduce noise and improve 
efficiency. The best COMFA and CoMSIA models were judged 
based on high q2 and correlation coefficient (R2) values (q2 > 0.50 
and R2 > 0.60), low standard error of estimate (SEE), and optimal 
number of component values (Golbraikh and Tropsha, 2002).

Molecular docking
The Surflex-Dock module in SYBYL-X 2.1 was 

employed to conduct molecular docking to investigate the binding 
interaction of each compound. The protein crystal structure of 
RSK2 complexed with LJH685 (PDB ID: 4NUS, resolution: 
2.39 Å) (Aronchik et al., 2014) was imported from the Research 
Collaboratory for Structural Bioinformatics Protein Data Bank 
(www.rcsb.org). All the water molecules and native ligand 
(LJH685) were removed, while polar hydrogen atoms were added 
to the protein. Molecular docking was performed using a protomol-
based method, which was generated based on a cognate ligand and 
active site residues of RSK2. The compound was geometrically 
optimized using the Tripos force field and the Powell algorithm 
with a convergence criterion of 0.05 kcal/molA˚ and Gasteiger–
Huckel charges assigned. The compounds were automatically 
docked into the binding site of RSK2 with other parameters left 
at default values. The Surflex-Dock module generated the Total-
Score, which is the representation of binding force expressed in 
negative logarithm of the dissociation constant (–logKd, Kd is the 
dissociation constant). The higher Total-Score implies stronger 
binding affinity, which was then selected as the docking result.

Molecular dynamics simulation and MM-PBSA calculation
The investigation of the binding interaction of ligand 

and protein target by molecular docking was not sufficient as 
docking method did not take into account receptor flexibility 
and water environment which are fundamental on living system. 
Therefore, MD simulation method was applied to resolve those 

issues. In the present study, MD simulation was conducted for 
50 ns for Compound 18 and HA25, each complexed with RSK2. 
The system preparation, minimization, heating, and equilibration 
steps were applied as in our previous protocol (Arba et al., 2018a; 
2018b). In addition, using MD trajectory, binding free energy was 
calculated by applying Molecular Mechanics Poisson–Boltzmann 
Surface Area (MM-PBSA) approach (Kollman et al., 2000). The 
MM-PBSA approach was applied to 200 snapshots extracted from 
30 to 50 ns. The MM-PBSA approach was described elsewhere 
(Arba et al., 2016; Kollman et al., 2000).

RESULTS AND DISCUSSION
The 3D-QSAR CoMFA and CoMSIA analyses were 

performed on 21 difluorophenol pyridine derivatives which were 
reported to inhibit P90 Ribosomal S6 Kinase. As the predictive 
ability of the QSAR model depends heavily on molecular alignment, 
alignment of the dataset was performed using Compound 18 as 
a template. The superimposition of all the compounds was done 
using the common skeleton as displayed on Figure 1. Furthermore, 
the derivation of COMFA and CoMSIA model was carried out 
on 16 training set compounds using PLS analysis with the result 
detailed in Table 2. It is showed that q2 for CoMFA and CoMSIA 
were 0.597 and 0.563, while R2 for CoMFA and CoMSIA were 
0.993 and 0.990, respectively, which was indicative for good 
internal QSAR model predictability. In addition, the external 
predictive ability was assured using six test set compounds, which 
were selected based on structural diversity and biological activity. 
It resulted in r2

pred value for CoMFA and CoMSIA was 0.996 each. 
In CoMFA model, steric and electrostatic accounted for 51.3% and 
48.7%, respectively, while in CoMSIA model, steric, electrostatic, 
hydrophobic, H-bond donor and H-bond acceptor accounted 
for 16.2%, 34.3%, 17.0%, 22.8%, and 9.6%, respectively. The 
F values for CoMFA and CoMSIA were 221.414 and 153.383, 
respectively, while SEE values for COMFA and CoMSIA were 
0.108 and 0.129, respectively. Table 3 shows the experimental 
and calculated pIC50 values of all the molecules, while Figure 2 
displays predicted pIC50 versus observed pIC50 for training and test 

Table 2. PLS statistic of CoMFA and CoMSIA models.

Statistical parameter CoMFA CoMSIA

q2 0.597 0.563

R2 0.993 0.990

r2
pred 0.996 0.996

F 221.414 153.383

SEE 0.108 0.129

N 6 3

Fraction CoMFA CoMSIA

Steric 0.513 0.162

Electrostatic 0.487 0.343

Hydrofobic - 0.170

H-Bond Donor - 0.228

H-Bond Acceptor - 0.096

q2: cross-validated correlation coefficient, N: optimum number of components, R: non-
cross-validated correlation coefficient, r2

pred: predictive correlation coefficient, SEE: 
standard error of the estimate, F: the Fischer ratio.

Figure 1. 3D-QSAR structure superposition and alignment of training set (left) 
and common substructure used for alignment (right) of difluorophenol pyridine 
derivatives.

ˆ

_
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set compounds for both CoMFA and CoMSIA, in which almost all 
the points are located on the straight line.

CoMFA and CoMSIA contour maps
The CoMFA and CoMSIA models were implemented 

through contour maps, which were constructed based on 
Compound 18 (the most active compound). The contour maps 
were used as guidance in designing new candidate compound as 
the modification in the certain area will correlate with biological 
activity change. The steric fields were represented by green and 
yellow contours, which favored and disfavored bulky groups, 

respectively, for enhancing inhibitory activity. As shown in Figure 
3a, the presence of the green contour around piperazine ring 
suggested that a bulky group at this region would be favorable. 
The electrostatic field contour maps of CoMFA were indicated 
by blue and red contours, respectively (Fig. 3b). Blue contour 
indicates that electropositive charge will increase the activity, 
while red contours indicate that electronegative charge will 
increase the activity. The blue contours around R2 position indicate 
that electropositive charge would be favorable.

In the CoMSIA steric field (Fig. 4a), the green area 
indicates that increasing the bulky group was favorable for 

Figure 2. Correlation of actual pIC50 versus predicted pIC50 for (a) CoMFA and (b) CoMSIA.

Table 3. The experimental pIC50s and calculated pIC50s of the training and test set molecules.

Comp Actual pIC50 (µM)
Predicted pIC50 (µM)

CoMFA Residual CoMSIA Residual

1* 6.7447 6.7580 −0.0133 6.7422 0.0025

2 7.3010 7.3982 −0.0972 7.2862 0.0148

3 7.2218 7.3126 −0.0908 7.4977 −0.2759

4* 6.8861 6.8864 −0.0003 6.9013 −0.0152

5 5.6778 5.7053 −0.0275 5.6856 −0.0078

6 6.1079 6.0830 0.0249 6.0665 0.0414

7* 7.4948 7.4570 0.0378 7.4699 0.0249

8 7.3372 7.2449 0.0923 7.4060 −0.0688

9 8.3979 8.3551 0.0428 8.3535 0.0444

10 8.3010 8.3043 −0.0033 8.3818 −0.0808

11* 7.7447 7.7840 −0.0393 7.7836 −0.0389

12 8.3979 8.4429 −0.0450 8.3292 0.0687

13 7.0269 6.7808 0.2461 6.9942 0.0327

14 8.1549 8.1679 −0.0130 7.9425 0.2124

15 8.0969 8.0884 0.0085 8.1118 −0.0149

16* 7.6990 7.6840 0.0150 7.6723 0.0267

17 8.2218 8.2688 −0.0470 8.1833 0.0385

18 8.301 8.2658 0.0352 8.3686 −0.0676

19 8.3979 8.3930 0.0049 8.3812 0.0167

20 7.0969 7.1539 −0.0570 7.0584 0.0385

21 5.3188 5.3931 −0.0743 5.3114 0.0074

*Compounds in the test set.
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increasing activity, while yellow contours disfavored bulky 
group. The large yellow contours around R2 position indicate 
the unfavorable bulky group for increasing the activity. The 
electrostatic field of CoMSIA (Fig. 4b) is shown in blue and red 
contours, in which blue and red contours favored electropositive 
and electronegative charges, respectively, for increasing inhibitory 
activity. The blue contour in the piperazine ring indicates that 
electropositive charge substituent will increase the activity, while 
the red contour on the benzene ring indicates that electronegative 
charge substituent will increase the activity.

The hydrophobic field of CoMSIA model (Fig. 4c) was 
displayed in yellow and white contours, in which hydrophobic 
group was favored in yellow contours to increase the activity. 
The large yellow contour in the benzene ring suggests that adding 

hydrophobic substituents in the region may help increase the 
inhibitory activity.

The hydrogen bond acceptor field of CoMSIA model 
(Fig. 4d) is shown in magenta and red contours, in which hydrogen 
bond acceptor group was favorable in magenta contours for 
increasing the activity. The hydrogen bond donor field of CoMSIA 
model (Fig. 4e) is displayed in cyan and purple contours, in which 
hydrogen bond donor group was favored in cyan contours for 
increasing the inhibitory activity. The contour map of the CoMFA 
and CoMSIA models is useful to design new difluoro phenol 
pyridine derivative.

Design for new molecule
The design of new compound aims to obtain compound 

with increased affinity, which was performed based on Compounds 

Figure 4. CoMSIA (a) steric fields: contribution of green and yellow contours is 80% and 20%, respectively (b) electrostatic fields: blue and red contours are 80% and 
20% contributions, respectively (c) hydrophobic fields: yellow and white contours are 80% and 20% contributions, respectively. (d) H-bond acceptor fields: magenta 
and red contours are 80% and 20% contributions, respectively (e) H-bond donor fields: cyan and purple contours are 80% and 20% contributions, respectively.

Figure 3. CoMFA (a) steric fields: the contribution of green and yellow contours is 80% and 20%, respectively. (b) Electrostatic fields: blue and red contours are 80% 
and 20%, respectively.
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18. From the results of the study, there is a novel compound that 
has a higher predictive value of both predicted pIC50 CoMFA and 
CoMSIA than Compound 18, i.e. HA25.

Interaction mechanism of compound
Following QSAR analysis, molecular docking was 

conducted to examine ligand–protein interaction. In the Surflex-
Dock module, docking result was represented in Total Score, which 
estimates binding affinity of ligand originating from contribution of 
various interactions. It was found that the new candidate compound 
(HA25) has a higher total score (total score = 12.3519) than that of 
reference compound (Compound 18, total score = 9.1220).

The designing compound using 3D-QSAR CoMFA and 
CoMSIA models was verified through molecular docking study to 
confirm the binding mode with the RSK protein. As a reference, 
native ligand of RSK2 (PDB ID: 4NUS), i.e., LJH685, which 
was known as a potent RSK inhibitor, was used. LJH685 is the 
same compound with the most active molecule in the reference 
journal, which is mentioned as Compound 18 in the present study. 
Figure 5 shows the interaction pose of HA25 and LJH685. As 
shown in Figure 4, difluorophenyl ring is bound to the gatekeeper 
area and flipped around 49 degrees from the pyridine ring plane 
(Aronchik et al., 2014). The difluorophenyl ring was in hydrogen 
bond contact with Asp211 and Lys100, while pyridine ring was 
in hbond contact with Leu150. The similar interaction was found 
for HA25 (Fig. 4b). The hbond contacts were established between 
pyridine ring with Leu150, as well as between difluorophenyl and 
Lys100 and Asp211. The amino acid residue Phe211 was in close 
hydrophobic interaction with the phenyl ring of both compounds.

Figure 5. The docked conformation of (a) LJH685 and (b) HA25 bound to RSK2.

Figure 6. (a) RMSD value of heavy atoms of RSK2 during 50 ns dynamics runs 
for LJH685 (red) and HA25 (green). (b) RMSF value of each amino acid residue 
during 50 ns dynamics simulation for LJH685 (red) and HA25 (green).

(a)

(b)
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To assure the stability of each LJH685 and HA25 in the 
binding site of RSK2, MD simulation was performed for 50 ns and 
several dynamics properties of complex were extracted. Figure 6a 
shows the root mean square deviation (RMSD) for backbone atoms 
of RSK protein during 50 ns, while Figure 6b displays the amino 
acid residues fluctuation (RMSF) during 50 ns. In the RMSD graph, 
fluctuation was recorded in the first 25 ns, while stable dynamics 
were observed in the remaining time of simulation. In a similar 
way, the RMSF plot shows that ligand binding to the RSK2 did not 
induce large movement in the amino acid fluctuation. Therefore, 
both complexes show well stable interaction.

The last step in our study was to calculate the binding 
affinity of each ligand using MM-PBSA method, which is well 
known for its compromise between accuracy and computational 
cost. The method is well accepted in the calculation of ligand-
receptor affinity. The MM-PBSA calculation was performed 
for 10,000 frames extracted from the last simulation. Table 4 
shows the binding free energy and its individual component. The 
electrostatic energy term was lower in HA25 (ΔEELE = −29.80 ± 
3.67 kcal/mol) than that in LJH685 (ΔEELE = −26.55 ± 4.79 kcal/
mol). A similar trend was observed in van der Waals energy in 
which HA25 (ΔEVDW = −44.28 ± 3.75) was lower than that 
in LJH685 (ΔEVDW = −38.70 ± 4.20 kcal/mol). The non-polar 
contribution of desolvation energy was almost the same for both 
complexes (ΔEPBSUR HA25 = −4.71 ± 0.23 vs. ΔEPBSUR LJH685 = 
−4.13 ± 0.27 kcal/mol). However, due to the polar contribution 
of desolvation energy which is more positive in HA25 (ΔEPBCAL 
= 45.98 ± 5.12 kcal/mol) than that in LJH685 (ΔEPBCAL = 37.34 
± 5.19 kcal/mol), the total binding free energy of both complexes 
was almost the same (ΔEPBTOT HA25 = −32.82 ± 3.64 kcal/mol vs. 
ΔEPBTOT LJH685 = −32.04 ± 3.03 kcal/mol). These indicate that 
the designed compound is a newly potential inhibitor for RSK2.

CONCLUSION
The present study has investigated the 3D-QSAR CoMFA 

and CoMSIA models for difluorophenol pyridine derivatives as 
RSK2 inhibitor. The developed CoMFA and CoMSIA models were 
both validated internally and externally. Using the validated models, 
new compound was designed which was more potent than the parent 
compound (Compound 18). The newly designed compound was 
investigated for its interaction with RSK2 using molecular docking 
and MD simulation, in which the complex was stable for 50 ns. 
The stable trajectory of MD was then used to perform MM-PBSA 
calculation, in which the new compound achieved comparable 
binding free energy with LJH685. This indicates the potential of the 
new compound to be developed as a novel inhibitor of RSK2.
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