A Mini Review on *Alphonsea* sp. (Annonaceae): Traditional uses, Biological Activities and Phytochemistry

Yuhanis Mhd Bakri, Munirah Abdul Talip, Saripah Salbiah Syed Abdul Azziz
Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjong Malim, Perak, Malaysia.

ABSTRACT

The genus *Alphonsea* belongs to the family Annonaceae, which comprises of about 30 species, consisting of small trees and shrubs are distributed in China and Indo-Malayan. In this mini review, we aim to provide an overview of the traditional uses, biological activities and phytochemistry of plants *Alphonsea* sp. Literature, abstract and full text articles from journals, books, reports and electronic searches as well as from other relevant websites are surveyed, analysed and included in this review. The crude extracts exhibit anti-cancer, anti-oxidant, anti-fungal, anti-inflammatory and anti-trypanosomal activities. The survey revealed that *Alphonsea* sp. contain alkaloids, steroids, lignan, sesquiterpenes and monoterpenes.

INTRODUCTION

Alphonsea is a small genus of the family Annonaceae, distributed in China and Indo-Malayan. In China, the species mainly found in Hainan and South Yunnan, while in Asia, the *Alphonsea* species can be found in India, Sri Lanka, Myanmar, Thailand, Laos, Vietnam, Cambodia, Malaysia, Indonesia and Papua New Guinea (Srivastava & Mehrotra, 2013). Genus *Alphonsea* were narrowly distributed and poorly known species scattered throughout tropical Asia. In Malaysia, the species that can be found are *A. borneensis*, *A. curtisi*, *A. cylindrica*, *A. elliptica*, *A. johorensis*, *A. maingayi* and *A. rugosa* (Turner, 2009; Latiff, 2013; Turner and Utteridge, 2015; Turner, 2016). Additionally, *A. hainanensis*, *A. monogyma* and *A. tsangyuanensis* have been listed as endangered species (IUCN Red List, 2010).

According to Turner (2009), the fruits of *A. javanica* were similar with *A. borneensis*, but it has more cylindrical monoculars to 2.5 cm in diameter whereas those of *A. borneensis* are ellipsoidal, or more rarely globose, and reach 4 cm in diameter. The obvious difference between *A. javanica* and *A. borneensis* is in the leaves. *A. javanica* has chartaceous leaves with a shiny upper surface, whereas *A. borneensis* has chartaceous leaves with a smooth but not markedly shiny upper surface. *A. rugosa* is similar to *A. elliptica*. The differences are *A. rugosa* have more carpels per flower than *A. elliptica*, with strongly wrinkled and globous of monocular surface, while *A. elliptica* have smooth and hairy surface (Turner and Utteridge, 2015). The leaves of *A. kingii* were similar to those of *A. elliptica* and *A. johorensis* (Turner, 2016).

© 2017 Yuhanis Mhd Bakri *et al*. This is an open access article distributed under the terms of the Creative Commons Attribution License -NonCommercial-ShareAlikeUnported License (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Traditional use

There are several uses of the plant parts of this plant. The ripe fruits of A. ventricosa, A. mollis, A. hainanensis and A. lutea are edible (Kar et al., 2013; Shu et al., 2011). The wood of A. mollis, A. hainanensis and A. monogyma were used for the construction of carts and agricultural implements. In addition, the wood of the Indian A. ventricosa was used in boat building in the Andamas (Burkill, 1966). Besides that, the flowers of A. monogyma are also fragrant and used for perfumery (Shu et al., 2011). According to Batugal et al. (2004), the boiled fruits of A. arborea have been traditionally used for the treatment of diarrhoea, reducing fever and emmenagogue or stimulating menstrual flow. However, the leaves of A. ventricosa and A. javanica have been reported to be poisonous (Burkill, 1966).

Biological activities

A thorough survey on biological activities of Alphonsea species revealed that not many studies and results were found. According to Horgen et al. (2001), the root extract of an unnamed Alphonsea species, was shown cytotoxic to brine shrimp at a concentration of 100μg/ml and known to be anti-cancer against various cancer cell lines such as human epidermoid carcinoma and murine lymphoid neoplasm cancer cell with IC₅₀ ≤ 20μg/ml. Besides that, the ethanolic extract of A. sclerocarpa showed significant free radical scavenging property by inhibiting the DPPH free radical. The ability of A. sclerocarpa bark extracts to inhibit the hydroxyl-free radical production has also been evaluated and was found to be very promising (Narendra, 2009). In addition, anti-fungal activity of A. sclerocarpa against Aspergillus flavus, fungal organism that usually associated with dandruff, showed moderate anti-fungal activity compared with local herbs shampoo (Indrani et al., 2015). According to Johnson et al. (2013), methanol extract of Indonesian A. javanica also possessed anti-inflammatory activity while the methanol extract of A. maingayii leaves and stem had been studied for anti-inflammation with IC₅₀ > 12.5 (Norhayati et al., 2013).

Phytochemistry

There were only a few studies on chemical compounds present in genus Alphonsea have been reported (Figure 1). Previous phytochemical investigations carried out by Xie et al. (1989, 1994) on the stem bark and bark of A. mollis, revealed isolation of 2,6-dimethoxy-5-hydroxy onchine (1), liriodenine (2), oxostephanine (3), mollisine (4), (2R,3R)-2,3-dihydro-2-(4-hydroxy-3-methoxyphenyl)-3-methyl-5-(E)-propenylbenzofuran (5) and concarpan (6). In 1999, Yang and Xie reported azafluorenol alkaloid, 6, 7-dimethoxy-5-hydroxy onchine (7) and other alkaloid, liriodenine (2), cyathocaline (8), isoconcodine (9) and darinene (10) from stem and branch of A. monogyma. Thang et al. (2013) reported glaucine (11) and nor-glaucine (12) were found from A. ventricosa. According to Tadić et al., (1987), the isolation of chemical compounds from barks of A. sclerocarpa revealed the presence of liriodenine (2), anonaine (13), norshinsunine (14), ushinsunine (15), stepharine (16), stepholidine (17), candidine (18), phenethyltrimethylammonium (19) and magnoflorine (20). On the other hand, the leaves of A. sclerocarpa have been found to contain crotsparine (21), sparsiflorine (22), laurotetanine (23), isoboldine (24), liriodenine (2) and petaline methane (25). In addition, Jalil et al. (2015) also had reported three steroids isolated from Malaysian A. curtisii; stigmasta-4, 6, 22-trien-3-one (26), stigmast-22-ene-3,6-dione (27) and stigmast-22-ene-3-one (28).

The chemical constituents of the essential oil content identified in two species of Alphonsea, A. philastreana and A. gaudichaudiana were reported in which sesquiterpenes; bicyclogermacrene (29) (9.3%, 6.3%), guaiol (30) (9.0%, 5.2%), bicycloelemene (31) (8.9%, 6.3%), γ-eudesmol (32) (8.3%, 5.5%), β-caryophyllene (33) (5.1%, 5.9%) and monoterpen (E)-β-ocimene (34) (6.9%, 8.5%) were found in both species, respectively (Thang et al., 2013). In A. philastreana, additional sesquiterpene, α-humulene (35) (5.8%) and monoterpen β-pinene (36) (4.6%) were reported, whilst sesquiterpenesviridiflorol (37) (6.0%) was found A. gaudichaudiana.
CONCLUSION

Alphonsea sp. which were found from north-eastern India and southern China southwards to Ceylon and Malaysia were surveyed. Many pharmacological studies have been performed on crude extracts and these extracts exhibit anti-cancer, anti-oxidant, anti-fungal, anti-inflammatory and anti-trypanosomal activities. Phytochemical studies show that they contain alkaloids, steroids, lignan, sesquiterpenes and monoterpenes. The discovery of novel compounds from *Alphonsea* sp. is much rarer, as indicated by the fact that no publication have described isolation of novel compounds. In addition, many species of *Alphonsea* species remain to be investigated, therefore, further study should be conducted on these species especially on understanding their phytochemistry and biological activities.

ACKNOWLEDGEMENT

Financial support and sponsorship: The research was funded by the Universiti Pendidikan Sultan Idris Research Special Grant (2017-0009-101-01).
Conflict of Interests: There are no conflicts of interest.

REFERENCES

