The Flow-Through Cell as an In Vitro Dissolution Discriminative Tool for Evaluation of Gliclazide Solid Dispersions

Laila H. Emara1*, Ebtesam W. Elsayed1, Ahmed A. El-Ashmawy1, Aya R. Abdou1, Nadia M. Morsi2

1Medical and Pharmaceutical Chemistry Department, Division of Pharmaceutical Industries, National Research Centre, 33 EL Bohouthst. (former EL Tahrirst.), Dokki, Giza, Egypt. 2Department of Pharmaceutics, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.

ABSTRACT

Gliclazide (GLZ) is used to treat type II diabetes mellitus. It is a poorly soluble drug with variable bioavailability. The aim of this study was to improve GLZ solubility and dissolution rate by mixing or co-grinding with different polymers (PEG 4000, PEG 8000, MCC, HPMC E15 and alginates). Dissolution of two commercial products was carried out for comparison. GLZ solubility in phosphate buffer (pH 7.4) showed that grinding of GLZ considerably increased its solubility while, other polymers did not affect GLZ solubility. Flow-through cell (FTC) dissolution apparatus with two patterns of GLZ powder loading were utilized to achieve sensitive and reproducible dissolution data. Results revealed that distribution of untreated and ground GLZ powder with large volume of glass beads gave the best dissolution profiles in terms of rapid onset of dissolution (Q050) and dissolution efficiency (DE60min). The best excipient among all was PEG (4000 and 8000), where GLZ physical mixture (PM) enhanced the dissolution rate without co-grinding to form solid dispersion (CSD). The highest dissolution rate and extent were obtained from GLZ:PEG 4000 (1:5) PM, where about 45.88% was dissolved after 5 min and DE60min was 74.18%.

INTRODUCTION

Dissolution of drugs is one of the major evaluation criteria during drug product development whether we are dealing with a new molecule, a modified or a generic product. It is a pre-requisite test required before carrying out bioavailability or bioequivalence studies (Wähling et al., 2011). Although the Flow through cell (FTC) became an official USP method since 1995 (USP App. 4) (Wähling et al., 2011), in vitro dissolution studies using this apparatus under different operational conditions and/or features are very few in literature (Emara et al., 2014a; Emara et al., 2014b; Emara et al., 2013; Emara et al., 2009; Krämer and Stippler, 2005; Beyssac and Lavigne, 2005; Fotaki and Reppas, 2005; Bhattachar et al., 2002; Emara et al., 2000). Our previous studies using the FTC proved that we should optimize the in vitro dissolution conditions for the finished product or during the preparation of different formulations to achieve accurate and reproducible results and to detect the effect of minor formulation changes upon storage. All these previous studies suggested that proper method of drug loading and the selection of cell design are crucial to obtain a reliable discriminating in vitro dissolution method otherwise, the dissolution results may become confusing or erroneous (Emara et al., 2014b; Emara et al., 2014a). In addition, the in vitro dissolution test using FTC could be modified to give a good in vitro-in vivo correlation (IVIVC) due to its flexibility in changing the dissolution conditions (Emara et al., 2000).

* Corresponding Author
Dr. Laila Emara, Industrial Pharmacy Laboratory, Medical and Pharmaceutical Chemistry Department, Division of Pharmaceutical Industries, National Research Centre, 33 EL Bohouthst. (former EL Tahrirst.), Dokki, Giza, Egypt. E-mail: lthemara@yahoo.com

© 2017 Laila H. Emara et al. This is an open access article distributed under the terms of the Creative Commons Attribution License -NonCommercial-ShareAlikeUnported License (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Previously, we concluded that considerably different dissolution profiles of drug(s) from the same product and/or formulation were obtained upon utilizing variable features of the FTC (Emara et al., 2014a; Emara et al., 2014b; Emara et al., 2013; Emara et al., 2009; Emara et al., 2000). These variable features include, but are not limited to, type of flow (laminar, turbulent (Emara et al., 2014a; Emara et al., 2014b; Emara et al., 2009)), rate of flow (4 to 45 ml/min (Emara et al., 2009; Beyssacand Lavigne, 2005; Bhattachar et al., 2002)), small and large cell (Emara et al., 2014a; Emara et al., 2014b; Emara et al., 2009), open- or closed loop setup and pH of the dissolution medium (Emara et al., 2014b; Fotaki, 2011; Brown, 2005; Emara et al., 2000). Moreover, loading the test sample in different positions of the cell has also been studied (Emara et al., 2014a; Fotakiand Reppas, 2005; Brown, 2005).

Optimization of the FTC operational conditions should be carried out individually for each tested drug due to the differences in the specific physicochemical properties and/or dosage form of each drug (Emara et al., 2014a; Emara et al., 2014b; Emara et al., 2013; Emara et al., 2012; Emara et al., 2009; Emara et al., 2000). A practical example can be seen if the drug is degradable in a certain pH (e.g. Aminocillin in acidic medium), the release rate study of the sustained-release preparations should be carried out in an open-loop setup of the FTC (Emara et al., 2013).

Enhancement of the dissolution rate of poorly soluble drugs, and hence its bioavailability, remains the major challenge during product development. Gliclazide (GLZ) is a poorly water soluble, second generation sulphonylurea oral hypoglycemic agent used in the treatment of type II diabetes mellitus. It has many added advantages such as protection of human beta-cells from apoptosis induced by intermittent high glucose, potentially slowing the progression of diabetic retinopathy, good general tolerability and low incidence of hypoglycemia (Del Guerra et al., 2007; Palmerand Brogden, 1993). However, GLZ exhibits low solubility and high permeability (Biopharmaceutical classification system, class: II) (Grbic et al., 2011). It also shows slow dissolution rate due to its hydrophobicity and poor wettability (Jondhale et al., 2012; Grbic et al., 2011; Biswal et al., 2008). Therefore, GLZ exhibits slow gastrointestinal absorption rate and high inter-subject variation for its bioavailability (Biswal et al., 2008; Jondhale et al., 2012; Biswal et al., 2009a; Palmerand Brogden, 1993).

Many approaches to enhance the dissolution rate of GLZ have been reported such as complexation with cyclodextrins, salt formation and preparation of different types of solid dispersions (El-Sabawiand Hamdan, 2014; Barzegar-Jalali et al., 2010; Biswal et al., 2008; Sapkal et al., 2007; Moyano et al., 1997b; Moyano et al., 1997a). Among all of these approaches, co-grinding is the simplest and the most environmentally desirable technique because it does not require toxic solvents or complex equipment (Barzegar-Jalali et al., 2010). Co-grinding of poorly soluble drugs with hydrophilic polymers lead to enhancement of their dissolution rate (Pandey et al., 2013; Swamy et al., 2010; Vogt et al., 2008; Yamada et al., 1999). This enhancement is thought to be due to particle size reduction and co-crystal formation (Jayasankar et al., 2006).

GLZ co-crystals were prepared by liquid-assisted grinding. An almost 2-fold improvement in the solubility and intrinsic dissolution was observed (Chadh et al., 2016). Solid dispersions obtained by co-milling of GLZ with amorphous silica or cross-linked swellable superdisintegrants like crosslinked polyvinylpyrrolidione, sodium starch glycolate and crosslinked carboxymethyl cellulose were quite effective in increasing the drug dissolution rate (Maggi et al., 2015). Barzegar-Jalali et al. (2010) reported that the type and ratio of carrier could play a major role in controlling the dissolution rate of GLZ from the co-ground samples. In addition, they found that co-grinding decreased the crystallinity and increased amorphousness of GLZ (Barzegar-Jalali et al., 2010). All these studies have evaluated the in vitro dissolution rates utilizing the conventional methods (USP apparatuses: I & II).

This study aimed to prepare different physical mixtures (PMs) and co-ground solid dispersions (CSDs) of GLZ with different polymers (PEG 4000, PEG 8000, MCC and HPMC E15) to enhance its dissolution behavior. Some commercial GLZ tablet products were considered as references. Moreover, the evaluation of GLZ preparations was carried out utilizing special FTC operational features which were capable of proper discrimination between the different dissolution profiles of GLZ from the tested PMs and CSDs.

**MATERIALS AND METHODS**

**Materials**

Gliclazide (GLZ) powder (particle size < 15 μm) was kindly donated from Sigma Pharma, Cairo, Egypt. GLZ market products were: Diamicron® 80 mg Tablets, Servier, Egypt (batch number: 19920) and Diamicron® 60 mg MR Tablets, Servier, Egypt (batch number: 20378).

Reagent grade chemicals were used unless otherwise indicated. Avisel PH-101(MCC, microcrystalline cellulose, particle size~50 μm, Fluka, Germany), hydroxypropyl methyl cellulose (HPMC E15, Sigma, USA), Polyethylene glycol 4000 (WNLAB, UK), Polyethylene glycol 8000 (Fluka, Germany), Alginic acid sodium salt-high viscosity (Alg-High, Sigma, USA), Alginic acid sodium salt-medium viscosity (Alg-Med, Sigma, USA), Alginic acid sodium salt-low viscosity (Alg-Low, Sigma, USA) were used in the preparation of different CSDs and PMs. Potassium dihydrogen orthophosphate (ADWIC, Egypt), sodium hydroxide (ADWIC, Egypt) and Milli-RO purified water (Millipore Corp., Billerica, MA, USA) were used to prepare the dissolution medium.

**Preparation of co-ground solid dispersions and physical mixtures**

PMs as well as CSDs of GLZ with excipients in different ratios were prepared (Tables 1 – 4). For CSDs, a fixed weight of GLZ with the corresponding excipient were co-ground in a mortar
for 5 min (Emara et al., 2016; Jayasankar et al., 2006). PMs of GLZ with different excipients were manually mixed in a low-density polyethylene bag (Emara et al., 2016; Nama et al., 2008) for 5 min. Content uniformity tests were carried out and the results were found within the acceptable range.

Solubility test

Solubility measurements were performed according to Higuchi and Connors method (Higuchi and Connors, 1965). For each experiment, a specified weight, containing an excess amount of GLZ, was weighed into stoppered glass test tubes and 5 ml of distilled water or phosphate buffer of pH 7.4 was added (Tables 1 and 2). Samples were shaken at 37 °C for 48 h (Grbic et al., 2011) in a temperature-controlled shaking water bath (Lab-Line, USA) at 250 rpm and then filtered through a 0.45 μm filter (Mellix, USA). The filtrate was suitably diluted and analyzed spectrophotometrically at a predetermined λ_max 225 nm against water or phosphate buffer pH 7.4 as blank. All solubility experiments were carried out in triplicates.

Table 1: GLZ measured solubility in water and phosphate buffer (pH 7.4) after 48 h at 37 °C.

<table>
<thead>
<tr>
<th>GLZ (powder)</th>
<th>Solubility (mg/ml) ± S.D.</th>
<th>pH 7.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated</td>
<td>0.075 ± 0.004</td>
<td>1.56 ± 0.06</td>
</tr>
<tr>
<td>Ground</td>
<td>-</td>
<td>1.87 ± 0.06</td>
</tr>
</tbody>
</table>

Table 2: GLZ measured solubility from different physical mixtures (PMs) and co-ground solid dispersions (CSDs) in phosphate buffer (pH 7.4) after 48 h at 37 °C.

<table>
<thead>
<tr>
<th>Drug carrier system</th>
<th>GLZ Solubility (mg/ml) ± S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PM</td>
</tr>
<tr>
<td>GLZ:MCC (1:1)</td>
<td>1.64 ± 0.06</td>
</tr>
<tr>
<td>GLZ:MCC (1:5)</td>
<td>1.47 ± 0.09</td>
</tr>
<tr>
<td>GLZ:MCC (1:10)</td>
<td>1.37 ± 0.01</td>
</tr>
<tr>
<td>GLZ:Alg-Low (1:1)</td>
<td>-</td>
</tr>
<tr>
<td>GLZ:Alg-Med (1:1)</td>
<td>-</td>
</tr>
<tr>
<td>GLZ:Alg-High (1:1)</td>
<td>-</td>
</tr>
<tr>
<td>GLZ:HPMC E15 (1:1)</td>
<td>-</td>
</tr>
<tr>
<td>GLZ:PEG 6000 (1:5)</td>
<td>-</td>
</tr>
</tbody>
</table>

In vitro dissolution test

In vitro dissolution tests were carried out using the closed loop setup of FTC [USP Apparatus 4, Dissotest CE-6 equipped with a CY 7-50 piston pump (Sotax, Switzerland)]. A Built-in filtration system with 0.7-μm Whatman glass micro-fiber (GF/F and GF/D) and glass wool was used throughout the study. The dissolution medium was 900 ml filtered and degassed phosphate buffer (pH 7.4) maintained at 37.0 ± 0.5 °C and pumped at a flow rate of 8 ± 0.2 ml/min. Samples were collected at the predetermined time intervals and replaced with fresh dissolution medium. Collected samples were analyzed UV/ spectrophotometrically at 225 nm against phosphate buffer pH 7.4 as blank.

Table loading into the FTC

For the evaluation of GLZ market products, tablets were loaded in the small FTC cell (Ø 12 mm), allowing for turbulent flow of the dissolution medium.

Powder sample loading:

Two FTC cell patterns (A and B), using the large cell (Ø 22.6 mm), allowing for laminar flow of the dissolution medium, were employed (Figure 1). For each preparation, a weight of powder that was equivalent to 80 mg GLZ was evaluated:

For cell pattern (A): homogeneously mixed powder (GLZ, PM or CSD) with glass beads (1:2, respectively) was loaded into the cell followed by addition of glass beads to fill the remaining space within the cell.

While for cell pattern (B): homogeneously mixed powder (GLZ, PM or CSD) with a quantity of glass beads sufficient to fill up to the score of tablet holder (Fotaki, 2011) was loaded into the cell followed by addition of a small amount of glass beads just to fill the remaining space within the cell.

Similarity of the dissolution profiles:

Dissolution profiles of some CSDs or PMs were compared by calculating the similarity factor (f_2) as proposed by Moore and Flanner (Moore and Flanner, 1996), defined as follows:

\[
    f_2 = 50 \log \left[ \left( 1 + \frac{1}{n} \sum_{i=1}^{n} w_i (R_i - T_i)^2 \right) \right]^{0.5} \times 100
\]

Equation (1), (Moore and Flanner, 1996)

Where R_i is the percentage of dissolved drug for a reference batch at time point t, T_i is the percentage of dissolved drug for the test batch, n is the number of time points and w_i an optional weight factor. The weight factor can be adjusted to give high or low weightings to selected time points as required. For example, if it is important to achieve a certain dissolution level by 40 min, the 40 min time point should be given a high weighting. The present study uses w_i = 1, meaning that each time point is weighted equally. For each experiment, the calculations were made on the mean of the triplicates.

Similarity factor value(s) can be between 0 and 100. The value is 100 when the test and the reference profiles are identical and approaches zero as the dissimilarity increases, but because f_2 is a log function small differences in profile lead to a large drop in f_2 (Anderson et al., 1998). The FDA suggests that two dissolution profiles are considered similar if the similarity factor f_2 is between 50 and 100 (FDA, 1997).
Dissolution efficiency

Dissolution efficiency (DE) was calculated from the area under the dissolution curve at time (t), measured using the trapezoidal rule, and expressed as percentage of the area of the rectangle described by 100% dissolution in the same time "Equation 2" (Khan, 1975).

\[
DE = \frac{\int_0^T y \cdot dt}{\int_0^T y} \cdot 100\% 
\]

**RESULTS AND DISCUSSION**

There were very few studies in literature that evaluated the solubility of GLZ in water and phosphate buffer (pH 7.4) (Maggi et al., 2015; Grbic et al., 2011; Biswal et al., 2009a).

Table 1 showed the solubility of untreated GLZ powder, after shaking for 48 h at 37°C in water and phosphate buffer at pH 7.4. In water, the solubility of GLZ was found to be (0.075±0.004 mg/ml). While, in a previous study of Biswal et al. (Biswal et al., 2009a), the solubility of GLZ in water after shaking for 72 h at 37°C was reported to be 0.8 mg/ml which was very far from our results. Also, in another study by Grbic et al. (Grbic et al., 2011), the solubility of GLZ was 0.5 mg/ml after shaking for 48 h at 37 °C in neutral medium. It is worthy to mention that, in our study, the particle size of GLZ was less than 15 µm, while both Biswal et al. (Biswal et al., 2009a) and Grbic et al. (Grbic et al., 2011) did not mention GLZ particle size. Maggi et al. (Maggi et al., 2015) have studied the concentrations of GLZ, with a mean volume diameter of 38.41 ± 30.64 µm, (at 21°C for 24 h) in distilled water at different time intervals. They found that the amount of GLZ

---

Fig. 1: Schematic diagrams and photographs showing the two FTC cell patterns (A and B) employed for sample loading.
dissolved after 4h was 0.0539 mg/ml and almost remained constant till 24 h (about 0.0540 mg/ml), confirming that GLZ reached a thermodynamic equilibrium in solution. Table 1 showed that the solubility of untreated and ground GLZ powder in phosphate buffer pH 7.4 was increased from 1.564±0.064 to 1.872±0.058 mg/ml, respectively (Table 1), which might be due to particle size reduction and distribution (Loh et al., 2015; Khadka et al., 2014). While, the study of Grbic et al. (Grbic et al., 2011) reported GLZ solubility of 1.25 mg/ml at pH 7.4, which was slightly lower than our results.

Table 2 showed that PM of GLZ:MCC (1:1) slightly increased GLZ solubility compared to that of untreated powder (1.64±0.06 and 1.56±0.06 mg/ml, respectively). While, increasing MCC to drug ratio (1:5 and 1:10) showed a pronouncedly decreased GLZ solubility. In case of co-ground GLZ with different carriers, the measured solubility were decreased compared to ground GLZ powder as shown in Tables (1 & 2) where the highest solubility was obtained from ground GLZ without any additives.

The dissolusion profiles, in phosphate buffer (pH 7.4), of two GLZ commercial products available in Egyptian market were depicted in (Figure 2). It was found that, both Diamicron® 80 mg and Diamicron® 60 mg MR showed very slow dissolution rates that failed to meet the requirements described by the British Pharmacopoeia for conventional-release and prolonged-release oral dosage forms (British Pharmacopoeia, 2011). Moreover, Diamicron® 80 mg tablets showed a dissolution profile that is similar to the modified release product Diamicron® 60 mg MR tablets ($f_2$=76).

<table>
<thead>
<tr>
<th>GLZ powder</th>
<th>FTC Pattern</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated</td>
<td>$Q_{5min}$ (%)</td>
<td>12.79 ± 0.49</td>
<td>14.6 ± 1.19</td>
</tr>
<tr>
<td></td>
<td>$DE_{60 min}$ (%)</td>
<td>38.32</td>
<td>42.77</td>
</tr>
<tr>
<td>Ground</td>
<td>$Q_{5min}$ (%)</td>
<td>26.23 ± 1.46</td>
<td>36.50 ± 2.50</td>
</tr>
<tr>
<td></td>
<td>$DE_{60 min}$ (%)</td>
<td>55.02</td>
<td>57.74</td>
</tr>
</tbody>
</table>

* $Q_{5min}$ = % drug dissolved after 5 min.

Therefore, pattern-B might solve the problems of aggregation, agglomeration and poor wettability of GLZ powder, which were suspected to be the reason of slowing down the
dissolution rate of the untreated drug powder using pattern-A. Consequently, pattern-B was selected for the in vitro dissolution testing of different GLZ PMs and CSDs. This provided a practical example of one of the advantages of FTC over the conventional USP I & II dissolution testers that it enabled optimization of the operational conditions and features of the dissolution test for each individual drug.

PM and CSD of GLZ with different polymers (MCC, HPMC E15, PEG 4000, PEG 8000) were prepared and their corresponding Q_{5min} and DE_{60min} values were listed in Table 4.

<table>
<thead>
<tr>
<th>Drug carrier system</th>
<th>PM Q_{5min} (%)</th>
<th>PM DE_{60min} (%)</th>
<th>CSD Q_{5min} (%)</th>
<th>CSD DE_{60min} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLZ:MCC (1:5)</td>
<td>32.29 ± 2.40</td>
<td>59.63</td>
<td>23.76 ± 1.69</td>
<td>41.10</td>
</tr>
<tr>
<td>GLZ:HPMC E15 (1:1)</td>
<td>-</td>
<td>-</td>
<td>27.20 ± 0.05</td>
<td>41.74</td>
</tr>
<tr>
<td>GLZ:HPMC E15 (1:5)</td>
<td>-</td>
<td>-</td>
<td>7.87 ± 2.64</td>
<td>15.79</td>
</tr>
<tr>
<td>GLZ:PEG 8000 (1:5)</td>
<td>29.43 ± 2.38</td>
<td>66.69</td>
<td>35.92 ± 1.49</td>
<td>67.73</td>
</tr>
<tr>
<td>GLZ:PEG 4000 (1:5)</td>
<td>45.88 ± 2.77</td>
<td>74.18</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Figure (4) showed the dissolution profile of GLZ:MCC (1:5). It was found that the PM gave higher dissolution rate than the CSD. The PM (GLZ:MCC, 1:5) gave a dissolution rate similar to the ground GLZ powder (f_2 = 71), where the early initial amount of GLZ dissolved (Q_{5min}) as well as (DE_{60min}) values were 36.50 & 32.29% and 57.74 & 59.63 %, for ground GLZ and PM GLZ:MCC (1:5), respectively (Table 4). MCC might have acted as a diluent that suppresses the aggregation and agglomeration of GLZ powder, and hence increased GLZ surface to volume ratio exposed to the dissolution media. Also, this enhancement of the dissolution rate upon mixing with MCC is thought to be due to the hydrophilic nature of MCC particles that improved the wettability of the hydrophobic drug particles (Valizadeh et al., 2007; Barzegar-Jalali et al., 2006; Friedrich et al., 2005). On the other hand, Figure (4) and Table (4) showed that CSD (GLZ:MCC, 1:5) considerably suppressed the dissolution rate of GLZ compared to the ground GLZ (f_2 = 39) and PM (GLZ:MCC, 1:5) (f_2 = 35). MCC is considered as a plastic material and a water insoluble diluent (Kadtare and Chaubal, 2006), which might be the reason for decreasing the dissolution rate of GLZ from CSD. This might enforce the drug particles to be intimately incorporated in MCC upon co-grinding and form a continuous plastic-like structure with the disappearance of the characteristic fiber-like structure of MCC as previously described (Emara et al., 2016).

Therefore, the dissolution of GLZ was not increased. We should address here the major influence of the exerted force during co-grinding on the fiber network structure of MCC, which was not observed with PM. This means that MCC could not be a promising excipient for preparing a CSD of GLZ, where the inherent physical properties of MCC could be dramatically altered by grinding techniques. Co-grinding of GLZ with MCC might possibly collapse the fiber network structure of MCC with reduction of pore size. Eventually, formation of tight networks around the solid drug particles occurred. This led to reduction of water uptake ability which lowered gliclazide release from GLZ:MCC CSD (Kolakovic, 2013). This result was found to be in a good agreement with a previous study of Emara et al. (Emara et al., 2016), where, MCC meloxicam CSD drastically decreased the amount of meloxicam dissolved compared to those without MCC which might have acted as a dissolution retarding polymer after grinding.

The dissolution rate of GLZ from the CSDs with HPMC E15 showed that increasing HPMC E15 in GLZ: polymer ratio (1:1, 1:5 and 1:10) slowed down the dissolution rate (Figure 5). Moreover, co-grinding with any ratio of HPMC E15 gave a slower dissolution rate than the untreated drug (Table 4). In contact with water, HPMC swells to form a gel, which acts as a barrier to drug diffusion. In addition, it is reported that increasing HPMC concentration or using higher viscosity grades increases the strength of the gel layer and retards the penetration of water thus delaying drug dissolution (Ghimire et al., 2010). In addition, this might be attributed to the swelling behavior of HPMC E15 that leads to increasing viscosity of the dissolution medium and hence retarding drug dissolution (Colombo et al., 2000).

The dissolution of GLZ from its PM showed a slower dissolution rate than the untreated drug powder (f_2 = 57.74). This means that HPMC E15 in GLZ: polymer ratio (1:1, 1:5 and 1:10) slowed down the dissolution rate (Figure 5). Moreover, co-grinding with any ratio of HPMC E15 gave a slower dissolution rate than the untreated drug (Table 4). In contact with water, HPMC swells to form a gel, which acts as a barrier to drug diffusion. In addition, it is reported that increasing HPMC concentration or using higher viscosity grades increases the strength of the gel layer and retards the penetration of water thus delaying drug dissolution (Ghimire et al., 2010). In addition, this might be attributed to the swelling behavior of HPMC E15 that leads to increasing viscosity of the dissolution medium and hence retarding drug dissolution (Colombo et al., 2000).
Physical mixing or co-grinding of GLZ with PEG 8000 (1:5) enhanced the dissolution rate (Figure 6, Table 4), where both $Q_{5\text{min}}$ and the DE$_{60\text{min}}$ were almost the same for PM and CSD. In addition, the PM and CSD with PEG 8000 showed similar dissolution rates of GLZ ($f_2 = 73$). This enhancement of the dissolution rate might be due to the known solubilizing capability of PEG 8000 (Koh et al., 2013; Biswal et al., 2009b). PEG 8000 is known to reduce particle aggregation, increase wettability and dispersibility and alter the surface properties of drug particles (Koh et al., 2013; Biswal et al., 2009b). Figure (6) and Table (4) showed that the dissolution profile of GLZ from the PM of GLZ:PEG 4000 (1:5) showed the fastest onset of dissolution ($Q_{5\text{min}} = 45.88\%$) and dissolution rate (DE$_{60\text{min}} = 74.18\%$) among all of the tested preparations. Different types of PEG have the ability to enhance dissolution by increasing the wettability and solubility of different drugs (Koh et al., 2013).

CONCLUSION

Testing of drug powder preparations requires proper selection of FTC operational conditions to obtain trustful and reproducible in vitro dissolution results with high accuracy. Improper selection of different features of FTC will give misleading dissolution data. The most promising preparation was the physical mixture with PEG 4000 (GLZ:PEG4000, 1:5). Meanwhile, all the proposed test preparations showed much faster dissolution rates compared to the commercial products: Diamicron® 80 mg and Diamicron® 60 mg MR tablets. Thanks for the presence of the FTC which could be able to optimize the dissolution conditions to solve all the problems of poor wettability, aggregation and agglomeration of hydrophobic drug particles.

Financial support and sponsorship: NIL.

Conflict of Interests: There are no conflicts of interest.

REFERENCES


Emara LH, El-Aslamawy AA, Tahaa NF, El-Shaffieb KA, Mahdeyb E-SM, Elkhollyc HK. Nano-crystalline cellulose as a novel


Kolakovic R. Nanofibrillar cellulose in drug delivery. Helsinki: Faculty of Pharmacy, University of Helsinki; 2013.


