Ethnobotanical and Phytopharmacological attributes of *Mesua ferrea*: A mini review

Muhammad Asif1*, Seyedeh Fatemeh Jafari1, Zafar Iqbal2, Vageesh Revadigar2, Chern Ein Oon3, Aman Shah Abdul Majid4, Amin Malik Shah Abdul Majid1

1EMAN Testing and Research Laboratory, Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia. 2Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia. 3Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, 11800, Malaysia. 4Department of Pharmacology, School of Medical Sciences, Quest International University, Perak, Malaysia.

ARTICLE INFO

Article history:
Received on: 23/07/2016
Accepted on: 18/12/2016
Available online: 30/04/2017

Keywords:
Mesua ferrea, guttiferae, anticancer, antioxidant, anti-inflammatory, standardised extract.

ABSTRACT

Members of guttiferae family are widely distributed in the tropical areas of the world, especially Asian countries and are traditionally used by the local people for the treatment of various ailments ranging from headache to cancer. *Mesua ferrea* L. is an important member of this family, which has been shown to possess multifactorial pharmacological activities. This review highlights the traditional uses, phytochemical profiling and proven pharmacological attributes of different parts of *M. ferrea*. Almost every part of the plant is reported to have beneficial medicinal properties that can help to fight against different ailments. However, further studies are still required to explore the molecular targets responsible for the observed pharmacological activities and to test the efficacy of isolated compounds or standardized extracts in properly designed experiments. In addition, long term toxicity studies are also required to establish the safety profile of isolated compounds/standardised extracts before the commencement of clinical trials.

INTRODUCTION

The guttiferae family is a rich source of secondary metabolites and is blessed with a variety of medicinal properties. It is comprised of 47 genera with more than 100 species. The well-known genera of this family are *Cratoxylum*, *Hypericum*, *Garcinia*, *Mesua*, and *Vismia* and are widely distributed in the tropical Asia, Africa, Brazil, New Caledonia and Polynesia (Gontijo *et al.*, 2012; Piccinelli *et al.*, 2005).

Traditionally various species of *Mesua* are used by the inhabitants of Asian countries for the treatment of a variety of ailments including asthma, cough, dyspepsia, fever, itchiness, nausea and renal diseases. Several pharmacological attributes of *Mesua* species such as antioxidant, antimicrobial, antiviral, antitumor and immunomodulatory have already been proved (Teh *et al.*, 2012; Asif *et al.* 2016).

In the recent years, plenty of research has been conducted to explore the phytochemical composition and pharmacological activities of crude extracts and isolated compounds obtained from different parts of *Mesua ferrea*, therefore, this review article was designed to highlight the recent advancement in the areas of phytochemical characterization and pharmacological profiling of this medicinally important tree.
Botanical names: *Mesua ferrea* L., *Calophyllum nagassarium* Burm. f., *Mesua nagassarium* (Burm. f.) Kosterm.

English name: Ceylon Ironwood, Cobra’s Saffron, Indian Rose Chestnut, Mesua.

Local name: Penaga Lilin, Penage Putih, Tapis (Malaysian), Tagayasan (Japanese), Croco Di Cobra (Italian), Nagasari Gede, Nagasari (Indonesian), Nagakesar (Indian), Nagasbaum (German), Arbe De Fer (Spanish), Ijerhout (Dutch), Tie Li Mu (Chinese), Nageshwar (Banglish), Nare-kaisar (Arabic).

Taxonomical order: Kingdom - Plantae; Phylum - Tracheophyta; Class - Magnoliopsida; Order - Malpighiales; Family - Calophyllaceae / Guttiferae; Genus – *Mesua*; Species – *Mesua ferrea* L.

Parts used: Bark, flowers, fruits, leaves, root, stamens and seeds.

TRADITIONAL USES

Various parts of *M. ferrea* are used either alone or in combination with other medicinal herbs by the inhabitants of India, Pakistan, Indochina, Malaysia and Thailand for the treatment of various disorders (Ratnamhin et al., 2011). Traditionally, *M. ferrea* is used as an antipyretic, antimicrobial, anticancer, carminative, cardiotonic, diuretic, and expectorant (Chahar et al., 2012; Rahman et al., 2008). In Malaysia, poultice of seed oils or crushed kernels are used for wound healing while the flowers and root decoction is used by women after child birth (Lim, 2012). In Thailand, seeds are used as aroma, cardiotonic, expectorant and wound healer (Wetwityaklung et al., 2008). In India, it is used in a variety of Ayurvedic formulations (Brahma Ramayana and Chyawanprash) as an immunity booster agent. It is also used as a herbal supplement for the treatment of a variety of diseases including bleeding piles, cough, cardiovascular disorders, dysentery, excessive thirst, headache, hiccup, itching, sweating, scabies, skin problems, small tumors and vomiting respectively (Joseph et al., 2010; Lim, 2012). Dried flowers have anti-inflammatory and stomachic properties (Lim, 2012). Bark is traditionally used for the treatment of cough, dysentery, sore throat and vomiting (Keawsa-arj and Kongtaweelert, 2012). Powder of dried fruits and leaves mixed with ghee is used by the local communities in Bangladesh to get relief from burning sensation in hands and feet, joint pain and cold (Sharkar et al., 2013). *M. ferrea* is an important ingredient of the Indian Siddha medicine (*Yelaathi Churanam*) which is used internally to treat chancres, leprosy and ulcers. It is prescribed in combination with butter and sugar in Indian system of herbal medicine for the treatment of bleeding piles. Another herbal formulation (*Jawarish-e-Naaremushk*) is prescribed in hepatic and intestinal problems (Khare, 2004). An Ayurvedic formulation (*Maharishi amrit kalash-4*) containing *M. ferrea* is traditionally used to treat cancer in India and neighbouring countries (Saxena et al., 2008; Asif et al., 2016).

MATERIAL AND METHODS

The information on *Mesua ferrea* was collected from the literature available in the books on medicinal plants and the scientific databases like PubMed, Google Scholar, Springer, and ScienceDirect. Different combination of keywords i.e., “Mesua”, “Mesua ferrea”, “Pharmacological”, “Anticancer”, “Antioxidant”, “Review”, “Phytopharmaceuticals” and “Phytochemistry” were applied to retrieve information available on the topic. The references of selected articles were also screened manually for additional studies. We also searched key journals which included BMC Complementary and Alternative Medicine, Fitoterapia, Journal of Ethnopharmacology, International Journal of Immunopharmacology, Phytomedicine, Phytochemistry, Phytotherapy Research and Tetrahedron to find some relevant information about the topic.

PLANT DESCRIPTION

Mesua ferrea is an evergreen medium to large-sized ornamental tree that is distributed in most of Asian countries including Burma, Cambodia, Indochina region, Malaysia, Myanmar, Nepal (southern), Philippines, Sri Lanka, Sumatra and Thailand. Young leaves are reddish yellow in colour while mature leaves are blue grey to dark green in appearance and are approximately 7-15 cm long. Flowers are large in size, have four petals containing numerous yellow coloured stamens in the centre and are fragrant. Fruits are often beaked, lightly woody in appearance containing 1-4 seeds. Bark is reddish brown in colour. Flower, fruit, seeds and leaves of this plant are edible. Flowers are eaten in Thailand by the local people for the cure of a variety of disorders. Ripe fruits have chestnut like taste when eaten. Seeds are edible when cooked but have an unpleasant taste. The leaves are edible in raw form and have a sour astringent taste (Lim, 2012).

Fig. 1: Brief overview of Mesua ferrea.
Similarly, *M. ferrea* is also used for the treatment of inflammation and other cancer associated disorders (Rai et al., 2000). Another polyhebral formulation named *Kanakasava* containing *M. ferrea* is traditionally used as an anti-asthmatic agent in India (Arora and Ansari, 2014).

PHYTOCHEMICAL STUDIES

A substantial amount of efforts has been invested to identify and isolate different types of phytoconstituents from various parts of *M. ferrea*. In general, it is reported to contain coumarins, xanthones, terpenoids and sterol type of phytochemicals (Keawsa-ard et al., 2015). An extensive research is undergoing on the stem, heartwood, roots, stem bark and oleogum resin of *M. ferrea* and till date a large number of phytochemicals have been isolated and identified. From heartwood mesuaxantheme-A, mesuaxantheme-B, 1,5-dihydroxyxanthone (II), euxanthone 7-methyl ether (IV) and β-sitosterol were isolated by various research groups (Chow and Quon, 1968; Govindachari et al., 1967a). Ferrol-A, an alkylcounmarin, was later isolated by Govindachari et al. from the trunk bark of *M. ferrea* (Govindachari et al., 1967b). Eight different types of xanthones i.e., 2-Hydroxy-2-methoxy-, 4-hydroxy-, 1,5-dihydroxy-, 1,7-dihydroxy-, 1-hydroxy-5-methoxy-, 1-hydroxy-7-methoxy-, 3-hydroxy-4-methoxy- and 1,5,6-trihydroxylxanthone were isolated by Gunasekera and colleagues from the timber (Gunasekera et al., 1975). Ferrxanthone, which was chemically characterized as 1,3-dimethoxy-5,6-dihydroxylxanthone was isolated from the heartwood (Walia and Mukerjee, 1984). Choudhury and colleagues analysed the essential oils contents of the bark, leaves, buds, and flowers (full bloom) of *M. ferrea* using high resolution GC and HRGC/MS techniques. The bark oil was found to be mainly composed of (E)-α-bisabolene (31.3%) and α-selinene (12.2%), while the major oils contents of tender and mature leaves were found to be α-copaene (19.3% and 9.9%) and β-caryophyllene (18.8% and 26.0%) respectively. α-copaene (28.7% and 20.2%) and germacrene D (19.0% and 16.1%) were found to be the major oil components of the bud and flowers (Choudhury et al., 1998).

Another research group isolated betulinic acid, (-) epicatechin, 1,6-dihydroxylxanthone, pyranojacareubin along with two novel compounds i.e., mesuabixantheme-A and mesuabixantheme-B from the stem bark of *M. ferrea* (Singh et al., 1993). Later, mesuferrol-A and -B, (-) epicatechin, 1,7-dihydroxy- and 5-hydroxy-1-methoxyxanthone were isolated from the stem bark by Iinuma and colleagues (Iinuma et al., 2004). Mesuaferrin-A and -B, caloxantheme C, 1,8-dihydro-3-methoxy-6-methylantraquinone, β-sitosterol, friedelin and betulinic acid have been recently isolated from the root bark by one research group (Teh et al., 2011). Similarly, from the stems and stem bark mixture of amyrins (α and β), β-sitosterol, calophyllin-B, dehydrocycloguanandin, euxanthone, euxanthone 7-methyl ether (IV), ferruol A, ferrxanthone, friedelin, lupeol, mesuaxantheme-A and mesuaxantheme-B, 1,5-dihydroxyxanthone (II), stimasterol, jcareubin and 6-desoxy jcareubin have been isolated by different research groups (Gunasekera et al., 1975, Keawsa-ard et al., 2015; Lim, 2012). A new xanthone, mesuaferrin C, along with macluraxantheme, caloxantheme C, β-sitosterol, friedelin and betulinic acid was isolated from the root bark by another research group (Ee et al., 2012). Likewise, Teh and colleagues isolated seven xanthenes namely, caloxantheme C, mesuaferrin-A, -B and -C, macluraxantheme, 1,5-dihydroxyxanthone and tovopyrifolin C from the root bark of *M. ferrea* (Teh et al., 2013). HPLC analysis of methanol and chloroform extracts of *M. ferrea* reveals the presence of a variety of natural antioxidants namely coumaric acid, ellagic acid, gallic acid, kaempferol, myricetin, rutin, quercetin,

![Image](image_url)

Table 1: Highlights of phytochemical composition of selected parts of *M. ferrea*.

<table>
<thead>
<tr>
<th>Plant part</th>
<th>Compounds</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heartwood</td>
<td>Mesuaxantheme-A, mesuaxantheme-B</td>
<td>(Govindachari et al., 1967)</td>
</tr>
<tr>
<td></td>
<td>1,5-dihydroxyxanthone (II), euxanthone 7-methyl ether (IV), β-sitosterol</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ferrxanthone (1,3-dimethoxy-5,6-dihydroxyxanthone)</td>
<td>(Walia and Mukerjee 1984)</td>
</tr>
<tr>
<td>Trunk bark</td>
<td>Ferrol-A</td>
<td>(Govindachari et al., 1967)</td>
</tr>
<tr>
<td>Timber</td>
<td>2-Hydroxy-, 2-methoxy-, 4-hydroxy-, 1,5-dihydroxy-, 1,7-dihydroxy-, 1-hydroxy-5-methoxy-, 1-hydroxy-7-methoxy-, 3-hydroxy-4-methoxy- and 1,5,6-trihydroxyxanthone</td>
<td>(Gunasekera et al., 1975)</td>
</tr>
<tr>
<td>Bark</td>
<td>(E)-α-bisabolene and α-selinene</td>
<td>(Choudhury et al., 1998)</td>
</tr>
<tr>
<td>Stem bark</td>
<td>Mesuferrol-A and -B, (-) epicatechin, 1,7-dihydroxy- and 5-hydroxy-1-methoxyxanthone</td>
<td>(Iinuma et al., 2004)</td>
</tr>
<tr>
<td></td>
<td>Friedelin, 3β friedelanol, lupeol, 3-oxo-betulin and spinasterol</td>
<td>(Islam et al., 2014)</td>
</tr>
<tr>
<td>----</td>
<td>Calophyllin-B, dehydrocycloguanandin, euxanthone, mesuaxantheme-A, mesuaxantheme-B, jcareubin, 6-desoxy jcareubin</td>
<td>(Gunasekera et al., 1975)</td>
</tr>
<tr>
<td>Stems</td>
<td>Amyrin (α and β), β-sitosterol, friedelin, lupeol.</td>
<td>(Keawsa-ard et al., 2015)</td>
</tr>
<tr>
<td>Root bark</td>
<td>Mesuaferrin-A and -B, caloxantheme C, 1,8-dihydro-3-methoxy-6-methylantraquinone, β-sitosterol, friedelin and betulinic acid</td>
<td>(Teh et al., 2011)</td>
</tr>
<tr>
<td></td>
<td>Mesuaferrin C, macluraxantheme, caloxantheme C, β-sitosterol, friedelin and betulinic</td>
<td>(Ee et al., 2012)</td>
</tr>
<tr>
<td></td>
<td>Caloxantheme C, mesuaferrin-A, -B and -C, macluraxantheme, 1,5-dihydroxyxanthone and tovopyrifolin C</td>
<td>(Teh et al., 2013)</td>
</tr>
</tbody>
</table>

---- shows parts of plant used for isolation not mentioned in the study.
and vanillic acid (Rajesh et al., 2013). Preliminary phytochemical screening of ethanol extract of M. ferrea leaves showed that it contains 14.72 mg/g of dry weight extract of total phenolic contents, 11.25 mg/g of dry weight extract of total tannin contents, 30 mg/g of dry weight extract of total flavonoid contents (rutin equivalent) and 3.60 mg/g of dry weight extract of total flavonol contents (rutin equivalent) respectively (Sahu Alakh et al., 2013b). Similarly, another recent study reports the presence of friedelin, 3β-friedelanol, lupeol, 3-oxo-betulin and spinasterol in the stem bark of M. nagassarium (Islam et al., 2014). Two essential oils, namely (E)-α-bisabolene and α-selinene were also identified in the bark oil of M. ferrea (Alakh et al., 2014). Table 1 highlights the phytochemical composition of some selected parts of M. ferrea. From oleo-gum resin, isoeledene, a sesquiterpene, has been identified by Asif and colleagues in their recent study (Asif et al., 2016).

PHARMACOLOGICAL STUDIES

Recent scientific studies have highlighted the medicinal importance of different parts of M. ferrea against a variety of human ailments.

Antioxidant activity

70% ethanol extract of M. ferrea leaves have been shown to have better antioxidant activity in DPPH, superoxide and hydroxyl radical scavenging assays as compared with other solvent extracts i.e., hexane, ethyl acetate and methanol. However, the antioxidant activity of 70% ethanol extract was found to be lower when compared with standard antioxidant agent (ascorbic acid) (Prasad et al., 2012). Another study conducted by Sahu Alakh and colleagues showed modest antioxidant activity of methanol extract of flowers in DPPH free radical (IC$_{50}$ = 300 µg/mL), superoxide (IC$_{50}$ = 273.56 µg/mL), and hydrogen peroxide (IC$_{50}$ = 21.70 µg/mL) scavenging assays (Sahu Alakh et al., 2013a). Similarly, in another study polar extract (methanol) of M. ferrea roots was found to be more active as compared with less polar and non-polar extracts (Teh et al., 2013). Essential oils obtained from the leaves showed moderate antioxidant activity in the DPPH assay with an IC$_{50}$ value of 31.67 mg/mL (Keawsa-Ard and Kongtaweelee, 2012). Another study reported the promising antioxidant activity of water and hot water extracts of M. ferrea flowers in the DPPH scavenging assay and effects were shown to be even stronger than standard agent i.e., butylated hydroxytoluene (BHT) with an IC$_{50}$ values of 7.49 and 6.95 µg/mL respectively (Makuchut et al., 2010). Chloroform and methanol extracts of M. ferrea stem bark have been shown to have good antioxidant activity in the in vitro antioxidant models. Both extracts protected erythrocytes, haemoglobin and DNA against oxidative stress-induced damage. The methanol extract showed strong activity (> 90%) as compared with chloroform extract (> 70% < 90%). This was suggested to be due to higher total phenolic and flavonoid contents of methanol extract (Rajesh et al., 2013). In another recent study, n-hexane extract of M. ferrea stamens has been reported to possess good free radical scavenging activity with an IC$_{50}$ value of 66.3 µg/mL. However, one major drawback of this study was that no standard drug was used to compare the efficacy of active stamen extract (Barbade and Datar, 2015).

Analgesic activity

In an acetic acid-induced visceral pain mouse model, non-polar (n-hexane) fraction of M. ferrea leaf extract showed better antinociceptive activity in terms of percent reduction in writhing response as compared with polar fractions (methanol and ethyl acetate) (Hassan et al., 2006; Lim, 2012).

Anti-inflammatory and anti-arthritis activities

Anti-inflammatory activities of M. ferrea seed extracts were evaluated in two different in vivo models i.e., Formaldehyde-induced and Complete Freund’s Adjuvant (CFA) -induced arthritis in rats. In formaldehyde-induced model, significant reduction in the swelling of formaldehyde injected paw was observed in the seed extract treated rats compared to the control animals. Similarly, in CFA model, reduction in the arthritis lesions as noted by swelling volume in CFA injected paw was observed in M. ferrea seed extracts treated animals. An increase in body weight of M. ferrea seed extract treated rats was also observed, while in control CFA injected rats a decrease in body weight was observed at the end of treatment (Jalalpure et al., 2011).

In vivo anti-inflammatory activities of xanthones i.e., mesuxanthonie-A, mesuxanthonie-B, calophyllin-B, dehydrocycloguanandin, euxanthone, jacareubin and 6-desoxy jacareubin isolated from M. ferrea were studied using three different rat inflammation models. All the xanthones were revealed to have promising anti-inflammatory activities in carrageenan-induced paw oedema, cotton pellet granuloma and granuloma pouch inflammatory models (Gopalakrishnan et al., 1980). In addition, an ayurvedic formulation (Shirishavaleha) containing M. ferrea in combination with other herbs has been shown to inhibit oedema development in carrageenan-induced paw oedema model (Yadav et al., 2010). Similarly, another recent study, reports the promising anti-inflammatory activity of 80% ethanol extract of stem bark in a variety of in vitro bioassays. The finding of the study revealed that 80% ethanol extract at the concentration of 100, 200 and 500 µg/mL has stronger anti-inflammatory activity in all the in vitro bioassays as compared with standard drug i.e., Indomethacin (100 µg/mL) (Ranganathaiah et al., 2016).

Antimicrobial and antifungal activities

Antimicrobial activities of different parts of M. ferrea have been highlighted by various scientific studies. Coumarins (4-alkyl and 4-phenyl 5,7-dihydroxycoumarins) isolated from the blossoms showed selective antibacterial activities towards resistant strains of gram positive bacteria (Verotta et al., 2004). Methanol extract of the leaves has been shown to possess broad spectrum antibacterial activities against Bacillus species, Escherichia coli,
Staphylococcus aureus, Shigella, Salmonella and Lactobacillus arabinosus bacterial strains respectively (Mazumder et al., 2003). In addition to in vitro antibacterial activity, methanol extract of leaves has shown profound protective effects in the mice against Salmonella typhimurium infection (Mazumder et al., 2004). Narender Prasad and colleagues also reported that methanol extract of M. ferrea leaves at the concentration of 1200 µg/mL has reasonable antibacterial activity (Narender Prasad et al., 2011).

Similarly, polar extract (chloroform) of stem bark has been reported to exert strong antibacterial activity against gram positive Streptococcus aureus as well as gram negative Escherichia coli bacterial strains (Ali et al., 2004; Lim, 2012). Likewise, another research group tested the antibacterial efficacy of flower extract against five different strains of Salmonella spp and was found to be active towards all the strains at the concentration of 50 µg. In addition, flower extract also showed promising in vivo antibacterial activity in S. Typhimurium NCTC 74 challenged mice and caused a statistically significant reduction in viable count of bacterial strain in liver, spleen and heart blood at the dose of 2-4 mg/mouse (Mazumder et al., 2005). Methanol extract of M. ferrea seeds also showed fungicidal activities against different strains of fungus, including Candida albicans, Trichosporon beigelii, Mucor hiemalis and different species of Aspergillus (Lim, 2012). Likewise, a recent study reports the antibacterial activity of M. ferrea seed oil epoxy resin against Klebsiella pneumoniae (gram negative) and Staphylococcus aureus (gram positive) strains of bacteria (Das et al., 2014). A gel formulation containing six different herbs, including M. ferrea was screened for its potential to prevent skin infections associated with the resistant strains of Staphylococcus aureus, Pseudomonas aeruginosa and Corynebacterium spp. Within 2 hours of contact, 100% bactericidal efficacy was observed in herbal gel treated animal group while complete eradication of infection with no rough or dry skin remnants was observed after 20 days of treatment. Moreover, herbal gel formulation showed no toxicity in skin toxicity tests (Deshmukh et al., 2009).

M. ferrea bio-oils extracted from deoiled cakes through the process of pyrolysis has been reported to have broad range of antimicrobial activities against a variety of bacterial and fungal strains, which gives a hint about possible pharmaceutical application of bio-oils (Phukan et al., 2013).

Water disinfectant properties

M. ferrea seed kernel oil (NSKO) has been reported to have water disinfectant properties and can be used as natural disinfectant alternative to chlorine. The study showed that kernel oil has remarkable disinfection potential and the kinetic studies suggested that NSKO fitted first-order model with a k value of -0.040 (Adewale et al., 2011).

Antivenom activity

Water extract prepared from the leaves of M. ferrea has been shown to have considerable (40%) anti-venom activity against Heterometrus laoticus (scorpion) venom in the in vitro chick embryo fibroblast cell lysis model (Uawonggul et al., 2006).

Diuretic properties

Polyherbal combination (Drakharishta-T and –M) and its marketed formulation comprising of stamens of M. ferrea has been shown to induce significant diuretic, kaliuretic and natriuretic effects in the albino rats at the dose of 2.0 mL/Kg over a period of 5 hours compared to the control group (Tiwari and Patel, 2011).

Anti-hemorrhoid activities

A polyherbal formulation containing M. ferrea was evaluated for its efficacy to treat bleeding piles in a preliminary clinical study using 22 subjects. Finding of the study revealed that out of 22 subjects, 16 patients had improvement in terms of reduced bleeding with no noticeable adverse effects (Paranjpe et al., 2000). Another recent study also highlights the efficacy of standardized herbal preparations (Daflon® and Roidosanal®) containing M. ferrea in terms of improvement of ano-rectal conditions in Grade I and II patients. Both preparations reduced the bleeding and pain in the hemorrhoid patients (Aggrawal et al., 2014).

Wound healing activity

Tannins isolated from the ethanol extract of aerial parts of M. ferrea have been shown to have promising wound healing activity in excision and incision wound healing rat models when applied in the form of an ointment. Increased epithelialization and wound contraction were proposed to be the possible mechanisms responsible for the wound healing activity of aerial parts (Choudhary, 2012).

Antirucler activity

Xanthones i.e., jacareubin and 6-desoxy jacareubin obtained from M. ferrea prevented ulceration in the rats as compared with control groups where extensive ulceration, perforations and haemorrhagic spots were observed. On the other hand, in xanthones treated rats only hyperaemia and occasional haemorrhage spots were noticed (Gopakalakrishnan et al., 1980; Lim, 2012).

Central nervous system (CNS) depressant and anticonvulsant activities

CNS depressant effects of xanthones (mesuaxanthone-A, mesuaxanthone-B, calophyllin-B, dehydrocycloguandanin, euxanthone, jacareubin and 6-desoxy jacareubin) obtained from M. ferrea were evaluated in both mouse and rat models. Typical CNS depressant effects, i.e., ptosis, sedation, loss of muscle tone and reduced spontaneous motor activity were observed in the xanthones treated animals respectively. Similarly, potentiation of anaesthetic effects of ether and phenobarbitone-induced sleeping time was also observed in the xanthone treated animals (Gopakalakrishnan et al., 1980; Lim, 2012). Likewise, another research group showed that M. ferrea flower extract caused a
significant increase in the pentobarbital-induced sleeping time in mouse model (Chakma et al., 2006). Ethanol extract of *M. ferrea* also exhibited anticonvulsant effects in the mice when tested in maximum electroshock seizures (MES) assay. The extract was revealed to reduce the duration of hind limb tonic extensions in a concentration-dependent manner (Lim, 2012).

Immunomodulatory and hormone balancing activities

Effect of mesuol isolated from the seed oil of *M. ferrea* on the immune system was studied using both humoral and cellular immune models. In humoral immune response assay, mesuol resulted in a significant increase in the antibody titer values in the rats, which were previously antibody challenged and immunized by the introduction of sheep red blood cells (SRBCs) followed by immunosuppression by cyclophosphamide. Similarly, mesuol also elicited cellular immune responses in cyclophosphamide-induced immunosuppressant rats due to the stimulation of T-cells. An increase in the thickness of foot pad was observed in mesuol treated rats when exposed to SRBCs (used as an irritant) (Chahar et al., 2012). In addition, flower extract of *M. ferrea* has also been shown to possess estrogen and progesterone-like effects which were proposed to be helpful in the correction of hormonal imbalance during menstrual disorders (Lim, 2012).

Antidiabetic activity

Methanol extract of *M. ferrea* leaves has been shown to have promising antidiabetic activity in streptozotocin-induced diabetic rats. Extract was suggested to increase the secretion of insulin from pancreatic β-cells. In addition to the insulin secretory effect, the leaf extract also reduced the blood glucose levels and normalized the body weight in the diabetic rats compared to the untreated rats. *In vitro* studies using mouse insulinoma pancreatic β-cell line (MIN6 β-cells) showed a dose-dependent increase in the levels of insulin as a result of methanol extract treatment and the effects were more prominent in the hyperglycemic conditions compared to normal cell culture conditions (Balekari and Veeresham, 2015).

Hepatoprotective activities

In vivo hepatoprotective effects of methanol extract of *M. ferrea* flowers were evaluated in *Staphylococcus aureus* inoculated male Wistar rats. One week treatment with 50, 100 and 200 mg/Kg of methanol extract showed significant improvement in the levels of liver enzymes, namely CAT, SOD, GPx, and GR with concomitant decrease in the levels of AAT and AST enzymes. Profound effects were observed at the dose of 100 mg/Kg of methanol extract (Garg et al., 2009). In another study, hepatoprotective effects of different extracts of stamens were evaluated using *in vitro* carbon tetrachloride-induced oxidative stress liver slice culture model. Among different extracts, n-hexane and ethanol extracts of stamens protected liver slice cells against carbon tetrachloride-induced oxidative stress.

The active extracts also showed promising antioxidant activities in different *in vitro* free radical scavenging models i.e., DPPH, ABTS+, SOD and NO respectively (Rajopadhye and Upadhye, 2012).

Cardioprotective activities

A polyherbal formulation (*Ashwagandharishta*) and its marketed preparation containing stamens of *M. ferrea* have been shown to protect against isoproterenol-induced myocardial infarction in the albino rat model. Treatment with herbal formulation also significantly prevented the isoproterenol-induced adverse changes in the levels of serum marker enzymes such as alanine aminotransferase, aspartate aminotransferase, creatine kinase and lactate dehydrogenase with concomitant improvement in the serum lipid profile. In addition, herbal formulation pretreated animals also showed significant increase in glutathione (GSH) and reduction in malondialdehyde (MDA) contents. It was proposed that the cardioprotective activity of herbal formulation may be due to increase in *in vivo* antioxidants levels such as GSH and inhibition of lipid peroxidation of cardiac membranes in the treated rats (Tiwari and Patel, 2012).

Protection against experimentally-induced Chronic Obstructive Pulmonary Disease (COPD)

A study conducted in the rats showed that herbal formulation (Bresol™) comprising of *M. ferrea* flowers has protective effects against cigarette smoke-induced COPD in rats. The rats treated with 250 and 500 mg/Kg for five weeks showed improvement in terms of reduction in tracheal inflammation, decrease in TNF-α and total protein levels in the bronchoalveolar lavage fluid and maintained the normal cellular architecture of the trachea and lungs (Rafiq et al., 2013).

Anticholinesterase and α-amylase inhibitory activities

Teh and colleagues in their recent study highlighted that the secondary metabolites isolated from different species of *Mesua* including *M. ferrea* have acetylcholinesterase inhibitory activities and have potential to be used in Alzheimer’s disease (Teh et al., 2016). *In vitro* α-amylase inhibitory assay conducted by Chakrabarti and team revealed that *M. ferrea* extract has moderate α-amylase inhibitory activity with an IC₅₀ value of 146.8 µg/mL while standard drug, acarbose, showed strong α-amylase inhibitory activity with an IC₅₀ value of 14.24 µg/mL (Chakrabarti et al., 2014).

Anticancer activities

Considerable amount of work has been done to explore the anticancer potential of different parts of *M. ferrea*. Variety of crude extracts and pure compounds have shown promising anticancer activities in the preliminary *in vitro* anticancer screening assays. Volatile oils rich methanol extract of *M. ferrea* flowers showed strong cytotoxic activities against T-lymphocyte leukemia cells with an IC₅₀ value of 12.5 µg/mL (Nordin et al., 2004). Ethanol extract of *M. ferrea* flower was tested against three human cancer cell lines viz., CL-6 (cholangiocarcinoma), Hep-2 (human laryngeal cancer) and Hep G2 (human hepatocarcinoma) cell lines. The finding of the study showed that ethanol extract was
selectively toxic towards Hep-2 cell line with an IC_{50} value of 19.22 µg/mL (Mahavorasirikul et al., 2010). Essential oils isolated from M. ferrea leaves have also been shown to possess cytotoxic activities against three cancer cell lines viz., KB (oral carcinoma), MCF-7 (breast adenocarcinoma) and NCI-H187 (metastatic lung carcinoma) and the order of cytotoxicity was revealed to be MCF-7 > NCI-H187 > KB respectively. While no toxic effects were observed against African green monkey normal kidney cells (Vero) (Keawsaard and Kongtaweelert, 2012). n-hexane and dichloromethane extracts of M. ferrea roots have been reported to possess broad spectrum cytotoxic activities against a panel of human cancer cell lines. The order of sensitivity of cancer cells towards n-hexane extract was Hep G2 (human hepatocellular liver carcinoma) > HeLa (human cervical cells) > NCI-H23 (human lung adenocarcinoma) > SNU-1 (human gastric carcinoma) > IMR-32 (human neuroblastoma) > LS-174T (human colorectal adenocarcinoma) > K-562 (human erythroleukemia cells) > SK-MEL-28 (human malignant melanoma cells) > Raji (human B lymphocyte). On the other hand, order of sensitivity of cancer cells towards the dichloromethane extract was Hep G2 (human hepatocellular liver carcinoma) > K-562 (human erythroleukemia cells) > NCI-H23 (human lung adenocarcinoma) > IMR-32 (human neuroblastoma) > SNU-1 (human gastric carcinoma) > LS-174T (human colorectal adenocarcinoma) > SK-MEL-28 (human malignant melanoma cells) > Raji (human B lymphocyte) respectively (Teh et al., 2013). In another study, n-hexane and dichloromethane extract of M. ferrea flowers has also been reported to have cytotoxic effects against CCRF-CEM (human lymphoblast leukaemia cell line). In addition both extracts were also shown to reduce resistance against doxorubicin in resistant CEM/ADR5000 cells by modulating P-glycoprotein function (Noyangs et al., 2014). Another recent study also reports the anticancer activities of M. ferrea stem extracts and isolated compounds against three cancer cell lines i.e., KB (oral carcinoma), MCF-7 (breast adenocarcinoma) and NCI-H187 (metastatic lung carcinoma). Among different extracts, n-hexane was found to be inactive in terms of induction of cytotoxicity against all the three cancer cell lines, while dichloromethane and methanol extract was found to be more active against KB than rest of two cell lines. Interestingly, isolated compounds, i.e., β-sitosterol, friedelin and mixture of α- and β-amyrin were either found to be less active or even inactive in terms of cytotoxic effects as compared with active crude extracts. It was proposed in the study that multi-components are responsible for the anticancer properties of M. ferrea stamen extracts (Keawsa-ard et al., 2015). Another recent study conducted by Asif et al shows that oleo-gum resin extract has broad spectrum anticancer activities towards human colon carcinoma cell lines.

<table>
<thead>
<tr>
<th>Part used</th>
<th>Model/Cell line</th>
<th>Extract/Compound</th>
<th>Findings</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flowers</td>
<td>T-lymphocyte leukaemia cells</td>
<td>Methanol</td>
<td>Inhibited the growth of leukaemia cells with an IC{50} value of 12.5 µg/mL.</td>
<td>(Nordin et al. 2004)</td>
</tr>
<tr>
<td>Flowers</td>
<td>CL-6, HepG2, Hep-2</td>
<td>Ethanol</td>
<td>Ethanol extract showed selective cytotoxicity towards Hep-2 cells with an IC_{50} value of 19.22 µg/mL, compared with other two cell lines where IC_{50} was found to be above 40 µg/mL.</td>
<td>(Mahavorasirikul et al. 2010)</td>
</tr>
<tr>
<td>Leaves</td>
<td>KB, MCF-7, NCI-H187, Vero</td>
<td>Essential oils</td>
<td>Essential oils exerted strong cytotoxic effects towards all the cancer cell line. Strongest cytotoxic effects were observed in MCF-7 with an IC_{50} value of 16.19 µg/mL. No cytotoxic effects were observed in normal Vero cells.</td>
<td>(Keawsaard and Kongtaweelert 2012)</td>
</tr>
<tr>
<td>Flowers</td>
<td>CCRF-CEM, CEM/ADR5000, PBCECs</td>
<td>n-hexane</td>
<td>n-hexane extract exhibited 85% growth inhibitory effects against CCRF-CEM (leukemic cells) at the concentration of 10 µg/mL, while dichloromethane extract inhibited 98% growth of CCRF-CEM cells at the concentration of 10 µg/mL. Both extracts also showed activity against doxorubicin resistant CEM/ADR5000 cells and effects were found to be due to modulation of p-glycoprotein function.</td>
<td>(Noyangs et al. 2014)</td>
</tr>
<tr>
<td>Stems</td>
<td>KB, MCF-7, NCI-H187, Vero</td>
<td>n-hexane</td>
<td>n-hexane showed no cytotoxic effects against any of the cell lines tested.</td>
<td>(Keawsa-ard, Liaoantragaloj and Kongtaweelert 2015)</td>
</tr>
<tr>
<td>Flowers</td>
<td>Ehrlich ascites carcinoma mice model</td>
<td>Chloroform</td>
<td>Chloroform extract significantly (**p < 0.001) reduced the tumor cells (54.8% tumor growth inhibition) in treated mice</td>
<td>(Rana et al. 2004)</td>
</tr>
<tr>
<td>Oleo-gum resin</td>
<td>HCT 116, HT29, LIM1215</td>
<td>n-hexane</td>
<td>Isolated rich sub-fraction induced apoptosis in HCT 116 cells by modulating the activity of multiple proteins</td>
<td>(Asif et al., 2016)</td>
</tr>
</tbody>
</table>

Values shown in brackets are expressed in µg/mL.

Table 2: Highlights of anticancer activities of M. ferrea.
The oleo-gum resin extract was shown to induce apoptosis in HCT 116 cells through ROS-mediated apoptotic pathways. Interestingly, oleo-gum resin extract did not induce toxicity in the normal colon cells (CCD-18co) (Asif et al., 2016). Similarly, Asif et al. in their recent study showed that terpenes rich stem bark extract has broad spectrum anticancer activities. The order of sensitivity (high to low) of cancer cell lines towards F-3 was HCT 116 > MNK-74 > PC-3 > T-47D > MIA PaCa-2 > HT-29 > PANC-1 > MCF-7 > Capan-1 > EA.hy926 > 3T3-L1 > CCD-18co respectively (Asif et al., 2017). In addition to variety of in vitro anticancer studies, there is also one study that reports the in vivo efficacy of chloroform and ethyl acetate extract of M. ferrea flowers against Ehrlich ascites carcinoma in Swiss albino mice. Percent inhibition of carcinoma in chloroform and ethyl acetate treated animals was 54.8 and 41.7% respectively (Rana et al., 2004). Table 2 highlights the anticancer activities of M. ferrea against different cancer cell lines.

Toxicological studies

Acute toxicity studies on different extracts of M. ferrea were conducted using albino mouse and rat models. In rat model, 5g/Kg doses of three different seed extracts i.e., petroleum ether, ethyl acetate and alcoholic did not provoke any signs of toxicity during the first 24 hours and no mortality in any of the test groups was observed (Jalalpure et al., 2011). Similarly, acute toxicity studies of methanol extract of M. ferrea flowers were performed in Swiss albino mice using three different doses i.e., 50, 500 and 2000 mg/Kg. In all the treated groups, none of the mice showed any visible signs of toxicity with zero mortality rates. Moreover, there was no differences in haematological and biochemical profiles of M. ferrea flowers feed and control mice, respectively (Udayabhanu et al., 2014). In another recent study, n-hexane extract of M. ferrea stamens has been reported to be safe in the acute toxicity mouse model; however, the doses used and safety level was not mentioned in the study (Barbade and Datar, 2015).

INDUSTRIAL APPLICATIONS

Apart from pharmacological attributes, numerous studies have highlighted the industrial applications of M. ferrea seed oils as an alternative biofuel in the diesel and compression ignition engines, in paint industry, as a multi-purpose industrial coating preparation and as biomaterials (nanocomposites etc.). Stamens are used as a fragrant stuffing for cushions and pillows. Wood is considered suitable for all types of heavy construction including railway sleepers, transmission posts, heavy-duty furniture, posts and tool handles (Lim, 2012).

PROPOSED PHARMACEUTICAL APPLICATIONS

Based on scientific studies reported above, we hereby propose that M. ferrea has potential to be developed as a herbal pharmaceutical product in the form of topical antibacterial gel/cream, as a standardised extract for internal bleeding disorders i.e., ulcers and hemorrhoids and as a chemopreventive and chemotherapeutic agent respectively. However, further studies are still needed in this aspect.

CONCLUSION

Recent scientific studies have highlighted that M. ferrea is a rich source of secondary metabolites which are having multiple health promoting benefits including antioxidant, anti-inflammatory, antimicrobial, anticancer and others. Several studies have recurrently highlighted the antioxidant, antimicrobial and anticancer effects of whole extracts, active fractions and pure compounds isolated from different parts of M. ferrea. However, there are some problems which need to be addressed, (i) conclusion of majority of studies are based on preliminary in vitro screening assays. Still further research is needed to confirm these activities by employing proper experimental tools. (ii) In majority of the studies no standard marketed drug was used as positive control and where positive control is used the efficacy of the active extract/ compound was not compared. The efficacy of active extract/ compound must be compared with standard drug as well. (iii) None of the study has reported the pharmacokinetic profile of active extract and isolated compounds. Further research is needed in this regard to estimate the feasibility of active samples for commercial drug formulation. (iv) Stamens are most commonly used in the polyherbal formulations, however, efficacy of other parts such as seeds, flowers, stems, bark and oleo-gum resin are also needed to be evaluated for the effective pharmaceutical product development. (v) Only few studies have reported the toxicity profile of selected parts, however, further studies are highly recommended in this regards before commencement of clinical studies. (vi) Standardization of active extracts is highly recommended in order to develop product of uniform composition and biological activity. (vii) Majority of studies did not identify molecular targets responsible for the biological activity; further studies to identify the molecular targets responsible for these medicinal properties especially anticancer, can help in the development of cost-effective and natural remedies against this chronic disorder.

ACKNOWLEDGEMENT

Financial support and sponsorship: Authors would like to acknowledge Universiti Sains Malaysia (USM) for supporting this project through USM research grant (304/PFARMASI/650735/KI23) and Institute of Postgraduate Studies Fellowship (P-FD0009/12 (R)).

Conflict of Interests: There are no conflicts of interest.

REFERENCES

Aggrawal K, Satija N, Dasgupta G, Dasgupta P, Nain P, Sahu AR. Efficacy of a standardized herbal preparation (Roidosanal®) in the

Chakma TK, Khan MTH, Rahman T, Choudhuri MSK, Rajia S, Alamgir M. Screening of Bangladeshi medicinal plants for their effects on pentobarbital-induced sleeping time in mice. Ars Pharmaceutica, 2006; 47:211-17.

Piccinelli AL, Cuesta-Rubio O, Chica MB, Mahmood N, Pagano B, Pavone M, Barone V, Rastrelli L. Structural revision of

Rahman SMM, Shabnem S, Quader MA, Hossain MA. Phytochemical study on the ethylacetate extract of the leaves of Mesua ferrea Linn. Indo J Chem, 2008; 8:242-44.

