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In this study, we created a pharmacophore models from a dataset of agonists for PPAR gamma receptor using 

the Catalyst/Hypogen module. A training set consists of 22 compounds activity range between 0.1 to 3,500 nM, 

were carefully selected. In previous study, molecular docking of macelignan against PPARγ binding pocket 

showed a free energy binding of -11.07 kJ/mol, interaction with the hydrophobic pocket (diphenyl pocket)(Celik 

et al., 2007), and a hydrogen bond network (His323, Tyr473, His449 and Ser289). The pharmacophore model 

(Hypo1), consisting of 5 features, i.e. one hydrogen bond acceptor (HBA), negative ionizable (NI), ring 

aromatic (RA) and two hydrophobics (HY) features, and one excluded volume. Hypo1 has the lowest total cost 

value (92.055), the highest cost difference (40.9316), the lowest RMSD (0.591049), and the best correlation 

coefficient (0.972949). Fourteen natural substances reported from nutmeg seeds (Myristica fragrans HOUTT.) 

were then mapped against Hypo1, and macelignan shows a fair fit value of 7.00102 with an estimated value of 

1271.990 nM. This concludes, macelignant in nutmeg might have antidiabetic properties via PPARγ receptor 

activation. 
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INTRODUCTION 
 

Peroxisome Proliferator-Activated Receptors (PPARs) 

are members of the nuclear receptor super-family that is involved 

in protein gene expression for energy, glucose and lipid 

metabolism, proliferation and differentiation of adipocyte, as 

well as insulin sensitivity (Arck et al., 2010; Hiukka et al., 2010; 

Farce et al., 2009). Three isoforms of these core receptors have 

been identified so far: PPARα, PPARβ/δ dan PPARγ. Each of 

them has different selectivity towards type of tissue, type of 

ligand, and finally, unique biological response. PPARγ is mostly 

expressed in adipose tissue, colon and macrophages, and has 

been proven for its role in regulating carbohydrate metabolism as 

well as fatty acid storage. Finding a new and poten ligand                

for PPARγ is the main focus in research for treating patients with  
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Type II diabetes mellitus, as it can restore insulin sensitivity. 

PPARγ agonist has made a big attraction in the clinical 

management of cardiovascular risk factors associated with 

metabolic syndrome and Type 2 diabetes mellitus (Pearson, 2009). 

A few classes of PPARγ agonist have been reported to possess 

anti-diabetic properties, such as: thiazolidindiones, 

dihydrobenzofurans, dihydro-benzopyrans, benzofuran 

benzoxazoles and -amino--phenylpropanoic acid derivatives 

(Henke, 2004b). Thiazolidinediones (TZDs) is an important class 

of PPARγ synthetic agonist (Feldman et al., 2008).  

TZDs are anti-diabetic agents that work on adipose tissue 

and increase insulin sensitivity. At this point, it is still used in the 

effort to treat Type II diabetes mellitus (Pourcet et al., 2006). 

Despite the clinical benefit of TZDs, they are related with side 

effects such as an increased body weight, an increased 

adipogenesis, kidneys fluid retention, and possible increase in 

cardiovascular disorder occurrences (Jones, 2010).  
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Thus, new PPARγactivator with an increased therapeutic 

efficacy and lesser side effects is necessary. Partial PPAR agonist 

is recently popular as a promising and new generation of PPAR 

activator. Partial agonist induces alternative receptor confirmation 

and as such, recruits different co-activator, which results in a 

different transcription effect when compared with TZDs. 

Therefore, it is indicated that such partial agonists will probably 

offer the required effectiveness and reduce side effects (Chang et 

al., 2007; Yumuk, 2006). Natural products are an important and 

promising source in the discovery of new potent drugs  (Newman 

and Cragg, 2007). Here, we created a pharmacophore models from 

a dataset of agonists for PPARreceptor using the 

Catalyst/Hypogen module for predicting the nutmeg seeds 

compounds. In the  previous study, Najjar et al. (2011) generated 

the pharmacophoric space of PPARg using seven diverse sets of 

activators (Al-Najjar et al., 2011).  However, the compounds 

screened was not natural compounds. Thus, the purpose of this 

study was to identify the functional groups or features that activate 

the human PPARγ as agonist. The approach with identification and 

modelling of pharmacophore at 2-aryloxy-3–phenyl-propanoic 

acid has been done with in silico method. 

 

MATERIAL AND METHOD 
 

Selecting Training Set Compound 

Choosing the training set is important for generating a 

hypothesis in the Hypogen and has to follow certain ground rules, 

such as a minimum of 16 varieties of structural compound has to 

be chosen to avoid by chance of correlation. Activity data was 

limited at least 4 magnitude order. The selected compounds should 

have simple and clear information. Any redundancy (extreme) in 

the structural features or in the activity data must be avoided. 

Inactive compound due to steric factor is unsuitable to be used in 

the training set because Catalyst is limited to accommodate that 

such cases. 

 

Data Set mining 

The number of 117 ligands were collected from some 

literatures as dataset that substraction as training set and external 

set.that has activity against PPARγ (Martres et al., 2008; Henke, 

2004a; Koyama et al., 2004; Shibata et al., 2012; Oon Han et al., 

2007). The database were chosen based on similar bioassay 

method as shown in Fig. 5. Activity values were presented as 

Effective Concentration, or EC50.  

Dataset was then divided into training set and test set. 

The Most Active (MA) compound gives an important information 

for pharmacophore modeling and a few Moderately Active (M) 

compound as well as Less Active (L) compound are also important 

in spreading the range for activity value as large as possible. A 

number of 20 ligands that fulfilled the criteria were used as 

training set and the remaining 25 compounds were selected as a 

test set based on the formula of 1.1. and 1.2.  Training set was 

selected using formula (1), while the external set was chosen 

beside of training set. For the training set data, attribute of 

uncertainty was set up to show uncertain value with a score of 3 on 

the spreadsheet. This means, the activity of the actual ligand in the 

training set would be in the range of 1/3 to 3 times from the 

ligand’s activity. 

Activity range of PPARγ compound is classified as 

followed: Most Active (<0,9nM), Moderate (0,9nM-316nM) and 

Less Active (>316nM). Compound’s activity is determined by 

calculation with the formula:  

MA * UncMA - A/ UncA >0.0     (1.1) 

log (A) - log (MA) >3.5      (1.2) 

Description: MA = compound with highest activity (lowest EC50); 

UncMA=uncertainty of activity is measured and A= activity from 

active compound  (Abu Hammad and Taha, 2009). 

 

Pharmachopore Modeling 

Generation of Conformation Library of Bioactive Compounds 

 For the training and test sets molecules, conformational 

models representing their available conformational space were 

calculated. All molecules were built using the 2D and 3D sketcher 

of Hyperchem 7.0, and optimized using MM2 in Hyperchem 7.0. 

A conformational set was generated for each molecule using the 

poling algorithm and the best energy option, based on CHARMm 

force field from Discovery Studio 2.5 (Brooks et al., 1983; 

Musfiroh et al., 2013). The molecules associated with their 

conformational models were mapped onto the pharmacophore 

model using the “best fit” option to obtain the bioactive 

conformation of each molecule.  

 

Pharmacophore Models 

A number of 255 Conformers was chosen to be 

minimized as best conformation, and 20 kcal/mol was set as 

energy threshold as global energy minimum for conformational 

searching (Wang et al., 2008), this protocol is available in DS 2.5 

packages. The best pharmacophore models was validated 

according to Deng et al. (Deng et al., 2008) in terms of cost 

functions and other statistical parameters which were calculated by 

HypoRefine module during hypothesis generation. A good 

pharmacophore model should have a high correlation coefficient, 

lowest total cost and RMSD values, and the total cost should be 

close to the fixed cost and away from the null cost. The best 

pharmacophore model was further validated by external test set 

and Fischer’s randomization test (Abu Hammad and Taha, 2009).  

 

Molecular Docking 

This study used LBD (ligand binding domain) of 

peroxisome proliferator-activated receptor gamma or PPAR(PDB 

id : 3HOD) (Fracchiolla et al., 2009) structure with 2.1 Å 

resolution. The crystal structure were selected according to best 

resolution or lower resolution value, and also have R-free and R-

value lower than 0.25 (Muchtaridi et al., 2014). The 3D structures 

of lignan derivatives compounds were constructed using 

Hyperchem 7, then were optimized using Austin Model 1 (AM1). 

Docking results have been saved in a dlg file to be analyzed to get 



050                                                              Muchtaridi et al. / Journal of Applied Pharmaceutical Science 6 (09); 2016: 048-053 

 

information about ligand orientation, binding energy value and Ki 

value (Ikram et al., 2015). Molecular docking method was 

validated by re-docking of the ligand of crystal as control 

doocking against PPAR (PDB id: 3HOD). Autodock 4.0 was 

employed to know the interaction between ligand and receptor 

(Muchtaridi et al., 2014). 

 

RESULTS  

 

3D-QSAR Pharmacophore Model 

The Hypogen that embedded in DS 2.5. was generated 

100 models. The results of the pharmacophore hypothesis from the 

3D QSAR Pharmacophore were presented in Table 1. The results 

showed that hypothesis 1, run 9 (Hypo1) was the best hypothesis 

results in this study. This is based on the value of cost difference, 

which is the highest value of 40.9316, lowest root mean square 

error with value of 0.591049, and highest correlation coefficient 

with value of 0.972949.  

 

Table 1: Hypothesis result of 3D QSAR pharmacophore for training set. 

Run no. Total cost 
Cost 

diff.
1
 

RMSD (Å) Correlation (r) 

4 89.4434 40.7476 0.628438 0.96755 

5 89.6173 40.5737 0.683979 0.962129 

6 93.0029 37.1881 0.788700 0.949402 

7 91.2994 38.8916 0.799089 0.947947 

9 89.2594 40.9316 0.591049 0.972949 
1
(Null cost-total cost), null cost =130.191. All cost values are in bits. 

 

This proved that there was more than 97% correlation 

between estimated activity and actual activity from the training set 

compounds. Fixed cost, total cost, and null cost are 84.8473, 

89.2594 and 130.191, respectively. Ideal difference between null 

cost and fixed cost are the value in between 70-100 bit. The 

difference between null cost and fixed cost that lies                     

between 40-60 bits indicates that correlation probability from 

Hypo1 is 75%-90% (Accelrys, 2002).  The  bigger  difference  and 

the higher probability could identify a good pharmacophore 

model. Configuration cost value has to be less than 17 and 

configuration value obtained is 16.4502.(Sutter et al., 2000). The 

3D space and distance constraints of these pharmacophore features 

are shown in Fig. 2B. Pharmacophore features of Hypol was 

presented in Figure 1 (A), consisting of 5 pharmacophore features, 

employing HBA, NI, RA, two HY and one excluded volume in 

Figure 1(B), shows the distance between features in Amstrong (Å) 

units. The distance between features of HY1 and HY2 was 6.6885 

Å. HY1 to HBA was 4.220 Å, HBA to NI was 12.096 Å, HBA to 

RA, 7,401 Å and RA to NI was 5,880 Å. This distance happens to 

be a combination of electrical and steric features of compounds 

that is necessary to ensure an optimal interaction of molecules with 

PPARγ to trigger its biological response (agonist) (Manetti et al., 

2003).  Figure 1c showed a lot of hydrophobic interactions in the 

binding pocket PPARγ (hydrophobic character). HBA interacted 

with the amino acid residue HIS449 (2.4 Å), HIS323 (3.0 Å) and 

TYR473 (2,8Å). This interaction explained that the ligands should 

have hydrophobic interactions and hydrogen bonding, to ensure 

their biological activity (PPARγ agonist). Mapping results of the 

training set compound on Hypo1 with the activity (experimental 

and estimated) and their corresponding error. 

 

A  

B  

C  

D  

 
Fig. 1: Feature of Best Pharmacophore with Validation by Hyporefine Run in 

DS 2.5. (a) The best HypoRefine pharmacophore model, Hypo1. (b) 3D spatial 

relationship and geometric parameters of Hypo1. (c) Mapping of Hypo1 to MA 

6 from training set (d) Mapping of Hypo1 to LA 105 from training set. 

Pharmacophore features are color coded; green: hydrogen-bond acceptor 

(HBA), cyan – hydrophobic feature (Hy), dark blue – negative ionizable (N), 

orange – aromatic ring (AR), and grey – excluded volume. 
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All most active (MA) compounds have been correctly 

predicted by Hypo1. All MA compounds mapped all pharma-

cophore features covering HBA, NI, AR and HY. One of MA 

compounds, i.e. compound 6 with EC50 value of 0.10 nM shows a 

fit value of 10.85 (Experiment: 0.1nM; Prediction: 0.18nM). Fit 

value indicates how well the pharmacophore features overlay 

chemical features in the molecule (Guner, 2005). A higher fit 

value is better [32]. Figure (3A), showed the compound 6 with 

HBA feature fitted with nitrogen sp/sp2 hybridization that has free 

electrons and smaller or no charge. The NI feature fitted against 

the carboxylate functional group, AR mapped to the benzene and 

both HY with methyl and phenyl respectively. 

 

Validation of Pharmacophore Model 

Fischer Randomization test 

Fischer Randomization is embedded in the DS 2.5 

package to evaluate the best pharmacophore model. CatScramble 

module within Catalyst was performed to evaluate the models. 

 

 
(a) Correlation (r2) of Hypo1 

 

 
(b) Total cost of Hypo1 

 

Fig. 2: The difference in total cost (b) and correlation (a) of hypotheses 

between the initial spreadsheet and 19 random spreadsheets after CatScramble 

run. 

 

 This statistical program in CatScramble mixes up 

activity values of all training set compounds to check whether 

there are strong correlation between the structure and activity. 

Cross validation test explained that Hypo1 has a significant value 

of 95% and the results. It could be seen in Figure 2a that the 

correlation value (r) on all pharmacophore models (Random 1 – 

Random 19) were smaller than the Hypo1 correlation, which 

showed highest correlation between experimental activity and 

predictive value. Fischer randomization test was done to assess the 

predictive quality of Hypo1. COST value indicatedthat the 

difference between estimation values andexperiment value. COST 

data obtained from running of 3D QSAR from every hypothesis 

was created a mold to test for Fischer randomization. Compounds 

were taken at random from every hypothesis, and then compared 

with the other hypothesis. Based on the results of Fischer 

randomization (Figure 2b), it was shown that data cost from 

training set compound was taken randomly by Hypo1 that showed 

the lowest COST. Both COST value and correlation showed that 

Hypo1 was the best hypothesis. 

 

Test set methods 

Subsequently, all the test set molecules were prepared by 

the same way as that for the training set molecules. Hypo1 was 

applied to map the 25 test set compounds which gave a correlation 

coefficient of between experimental and estimated activities as 

shown in estimated Fig 4.  

The results showed that all ligands with MA activity 

were predicted accurately, except for ligand 6 and 10, where by the 

ligand is underestimated became M. 

From all the M ligands, only ligand 45 was overestimated 

to have MA activity. LA ligands were all predicted accurately as 

well, except for ligand 63, in which it is overestimated into MA. 

Hypo1 shows a correlation as large as 0.9011, which means that 

there are good relationship between experimental value and 

estimated value. A linear regression showing the similarity of 

experimental activity and estimated activity is shown in Figure 3.  

 

 
 

Fig. 3: Plot of the correlation (r) between the experimental activity and the 

predicted activity by Hypo1 for the test set molecules and the training set 

molecules.  

 

Figure 4 showed that the character of the PPARγ binding 

pocket using software Ligand Explorer incoperated in the Protein 

Data Bank (PDB) website. Binding mdeof the lead compound was 

shown by the interaction between the amino acid residues with the 

binding site. Figure 1c shows a lot of hydrophobic interactions in 

the binding pocket PPARγ (hydrophobic character). Figure 1c and 

Figure 3 showed that HBA interacted with the amino acid residue 

Corellation Random1 Random2 Ramdom3 

Random4 Random5 Random6 Random7 

Ramdom8 Ramdom9 Random10 Random11 

Random12 Random13 Random14 Random15 

Random16 Random17 Random18 Random19 

Costs random1 random2 random3 
random4 random5 random6 random7 
random8 random9 random10 random11 
random12 random13 random14 random15 
random16 random17 random18 random19 
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HIS 449 (2.4 Å), HIS 323 (3.0 Å) and TYR 473 (2.8Å). This 

interaction suggested that the ligands should have hydrophobic 

interactions and hydrogen bonding, to ensure their biological 

activity (PPARγ agonist).  

 

 
A 

 

 
B 

Fig. 4: Character of the PPARγ binding pocket using software Ligand Explorer 

incorporatedin the Protein Data Bank (PDB).(a) Hydropobic interaction in 

PPARγ binding pocket, (b) Hydrogen bond interaction in PPARγ binding 

pocket 

 

Activity Prediction of Nutmeg Seed Compounds 

Dihydro-di-isoeugenol (DHDE) in nutmeg (Myristica 

fragrans Hout) is recently developed as antidiabetic medicine  

with predicted mechanism of action as a dual agonist, i.e. PPAR α 

and γ (Muchtaridi et al., 2014). In this study, 14 compounds 

derived from nutmeg plant, thiazolidinediones and lead compound 

2-arloxy-3-phenyl propanoic acid (3HOD) which is expected 

active, was mapped by Hypo1 model.  

Reason for mapping is to approach that even with 

different chemotypes, it can have good mapping results with 

Hypo1. From a total of 22 compounds, Malabaricone B from 

nutmeg extract shows highest fit value (8.10119) with estimated 

activity of 100.997 nM. However, this compound still doesn’t have 

any research on its antidiabetic activity towards PPARγ receptor  

in vitro or in vivo. Antidiabetic currently being used in Indonesia 

now is Pioglitazone, with a fit value of 6.87839. Hypo1 predicted 

EC50 1686.99nM where experimental activity value of 1280nM 

(Casimiro-Garcia et al., 2013). Rivoglitazone shows fit value of 

7.08281 (Kong et al., 2011; Schimke and Davis, 2007) with 

estimated activity value of 1053.62 nM 

Although Malabaricone B shows highest fit value, it 

exists in a small quantity in nutmeg seeds which complicates the 

process being a marker and for extraction. Perhaps in future study, 

a new lead compound can be found or a better extraction technique 

for the nutmeg contents. 

 

CONLUCION 
 

Active pharmacophoric features for PPAR gamma 

agonist are Hydrogen Bond Acceptor (HBA) and Hydrophobic 

(HY). The compoundsof of nutmeg seeds (Myristica fragrans 

Hout) have the highest fit value (8.10119) with a total estimated of 

activity value 100,997 nM. 
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