Terminalia ivorensis A. Chev. Ethanolic Stem Bark Extract Protects Against Gentamicin-Induced Renal and Hepatic Damage in Rats

Charles Ansah*, Aliu Moomin, Kwesi Mensah Boadu
Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.

INTRODUCTION

Nephrotoxicity is a common and serious side effect of conventional medications (Rajitha et al., 2013). Available records indicate that 27 million people have chronic kidney disease with a rise of 30% over the past decade (Coresh et al., 2007). Renal insufficiency is observed in nearly 2% cases of acetaminophen overdose and the occurrence of renal dysfunction from aminoglycosides especially gentamicin increased from 3% in 1969 to 10-20% in the past few years (Eslami et al., 2011; Rajitha et al., 2013). Renal injury is also caused by various compounds including potassium dichromate (Pedraza-Chaverri, 2008) used in the metallurgical, chrome plating, paint, leather tanning, photographic, textile manufacturing and wood preservation industries. The nephotoxic effect of the aminoglycosides has been strongly linked to the preferential accumulation in renal cortex (Luft and Kleit, 1974). Another common and relevant adverse effect of drug therapy is hepatotoxicity, which accounts for 5% of all hospitalized cases and 75% of adverse reactions resulting in death (Sivakrishnan and Kottaimuthu, 2013; Aashish et al., 2012). Consequently, hepatic injury has been a common cause of drug withdrawal from the market (Jaeschke et al., 2002). The integrity of the kidney and the liver are compromised in injury. This could exacerbate the conditions since these are the main organs for drug metabolism and consequent elimination from the body. Available drugs for the management of renal and hepatic injury are rather limited. Medicinal plants have been used for the cure of several human diseases and are gaining more acceptability due to less toxicity and high efficacy (Aslam et al., 2013). Among the medicinal plants used for the treatment of various diseases is Terminalia ivorensis. Terminalia ivorensis A. Chev (Combretaceae) is a tree located in the tropical and sub-tropical regions of the world (Burkill, 1985). The plant has several traditional uses. For example, it has been used to treat ulcers, cuts, sores, wounds, general body pains, hemorrhoids, malaria, yellow fever and for the induction of diuresis (Quattara et al., 2013; Akinyemi et al., 2006; Etukudo, 2003; Burkill, 1985). Gentamicin is used widely in the treatment of gram-negative infections. Gentamicin is known to be potentially nephrotoxic at levels marginally above the therapeutic dose (Pedraza et al., 2000; Conlon et al., 1999).

* Corresponding Author
Charles Ansah, Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
Email: cansah.pharm[at]knust.edu.gh

© 2016 Charles Ansah et al. This is an open access article distributed under the terms of the Creative Commons Attribution License -NonCommercial-ShareAlikeUnported License (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Renal damage induced by the aminoglycosides can be accompanied by liver injury (Martines et al., 1988). Considering the effectiveness of gentamicin in the management of gram-negative infections albeit the potential to evoke renal and hepatic damage, a plant drug administered concomitantly to modulate the risk of nephrotoxicity and hepatotoxicity would be worthwhile. We evaluated *Terminalia ivorensis* in the present study against gentamicin-induced nephrotoxicity and hepatotoxicity on the basis of its traditional use on the urinary system and the reported wide traditional uses of the plant.

MATERIALS AND METHODS

Preparation of plant material

Stem bark of *Terminalia ivorensis* was collected from Asakraka Kwahu in the Eastern region (Ghana) in September 2014 and authenticated at the Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences KNUST Kumasi Ghana by Dr. Kofi Annan. A voucher herbarium specimen number FP/095/10 was prepared and deposited in the department’s herbarium. The harvested stem bark was washed, air dried for 14 days and ground with a laboratory blender. It was weighed and extracted with 70% ethanol. The sample was oven dried at 55°C and the yield obtained was 24.3% w/w, referred in this paper as TIE. TIE was stored in a refrigerator until use. The extract was freshly dissolved in distilled water, which was used as vehicle for administration to the animals. Administration to the animals was oral by gavage and the concentrations were prepared such that no animal received more than 1.0 mL/kg body weight.

Animals

Male Sprague–Dawley rats (180 – 240g) were obtained from the Animal house of the Department of Pharmacology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana. The animals were acclimatized for one week with free access to laboratory feed and water *ad libitum*. All the animals were housed in aluminium laboratory cages (34 x 47 x 18 cm) with fine wood shavings as bedding. Animals were humanely treated and all experiments were approved by the Faculty of Pharmacy and Pharmaceutical Sciences ethics committee.

Effect of extract on gentamicin– induced nephrotoxicity and hepatotoxicity

The method used was as described by Qadir et al., (2011). Briefly, thirty (30) male Sprague–Dawley rats (180 – 240 g) were weighed, put into five groups (n =6) and left to acclimatize to their new environment for one week with adequate fresh water and feed. Animals were grouped and drugs administered as follows:

- **Group I** (control): received distilled water (1 mL/Kg/day p.o) for 14 days.
- **Group II** received gentamicin (80 mg/kg/day i.p.) for 14 days.
- **Group III**: received extract (100 mg/kg/day p.o) + gentamicin (80mg/kg/day i.p.) for 14 days.
- **Group IV**: received extract (300 mg/kg/day p.o) + gentamicin (80mg/kg/day i.p.) for 14 days.
- **Group V**: received extract (1000 mg/kg/day p.o) + gentamicin (80mg/kg/day i.p.) for 14 days.

Treatment of animals with the extract for groups III, IV and V started 3 days prior to the commencement of the study. Injection of gentamicin was done at 10:00 hours to minimize the circadian variation in nephrotoxicity. On day 14, all animals were put in metabolic cages for collection of 24 – hour urine sample. On the 15th day, all animals were weighed and blood samples collected for estimation of serum electrolytes, blood urea and creatinine levels as well as liver biomarkers. All animals were then sacrificed and their kidneys and livers removed, washed with normal saline and weighed. The right kidneys and livers were preserved for histopathological studies while left kidneys were used for preparation of post – mitochondrial supernatant.

Estimation of renal and liver biomarkers

Blood samples were centrifuged at 5000 r.p.m for 10 minutes to obtain sera which were used for the estimation of the kidney and liver biochemical markers. Urea and creatinine were determined with Biotecnica BT 3000 Targa chemistry analyzer (Diamond Diagnostics, USA). Measurement of sodium, potassium and chloride were done with Flexor Junior Auto analyzer. Liver biomarkers were also measured with Biotecnica BT 3000 Targa chemistry analyzer (Diamond Diagnostics, USA).

Preparation of tissue homogenate

Left kidneys were quickly removed, cleaned and immediately stored in ice-cold saline (0.85% sodium chloride). Kidneys were homogenized in phosphate buffer (0.1M, pH 7.4) containing KCl (1.17%) at 4 °C with Potter-Elvehjem homogenizer (Ultra-Turrax T25, Janke & Kunkel IKA-Labortechnik, Germany). The homogenate was filtered with a clean handkerchief and centrifuged with Hettich-zentrifugen (Micro 220R, Germany) at 800 X g for 5 minutes at 4 °C. The supernatant was again centrifuged at 5000 r.p.m for 30 minutes at 4 °C to obtain the tissue homogenate which was used as the enzyme source for the biochemical estimations. All the experiments were performed within 24 hours of animal sacrifice -

Estimation of markers of oxidative stress

The method of Ellman, (1959) was used for estimation of reduced glutathione. Superoxide dismutase levels were measured as described by Sun et al., (1988) and catalase activity was assessed using a method of Sinha, (1972). Lipid peroxidation was examined in terms of malondialdehyde (MDA) formed as described by Ohkawa et al., (1979) and the amount of myeloperoxidase (MPO) formed was evaluated using the method of Senoglu et al., (2009).
RESULTS

Effect of gentamicin on renal parameters and electrolytes

Serum creatinine levels were significantly elevated in the gentamicin-only treated group (p< 0.001) compared to the control, whereas significant decrease in creatinine (p< 0.001) was observed in extract pre-treated groups when compared to the gentamicin group. Similarly, gentamicin significantly (p< 0.001) increased the serum urea levels of rats when compared to the control. However, reduced serum urea levels were observed in animals pretreated with 300 (p< 0.001) and 1000 mg/kg of extract (p< 0.01) when compared to the gentamicin treated group (Table 1). Serum electrolytes (sodium, potassium and chloride) were significantly (p< 0.001) increased in the gentamicin-only treated group. The group treated with 300 mg/kg TIE and gentamicin (80 mg) caused significant reduction in sodium (p<0.01), potassium (p< 0.001) and chloride levels (p< 0.001). Similarly, combination treatment of 1000 mg/kg TIE and gentamicin reduced the electrolytes significantly (p<0.001) to normal levels.

TIE 100 mg/kg with gentamicin decreased potassium (p<0.001) and chloride (p<0.01 but not sodium levels (Table 2).

Effect of TIE and Gentamicin on antioxidant enzymes

Gentamicin (80 mg/kg), significantly (p< 0.001) decreased tissue GSH of rats compared to the control. Pretreatment with 300 and 1000 mg/kg TIE significantly (p< 0.01; p< 0.001 respectively) restored the GSH levels compared to the gentamicin-only treated group (Figure 1). The oxidative stress caused by the

Histopathological analysis

Immediately after sacrifice, right kidneys of rats were stored in neutral buffered formalin (10 %) for histological processing. Sections of the kidneys and livers were stained with hematoxylin and eosin, and observed under a Leica DM 750 microscope (ICC50 HD, JosHansen, Germany) at magnifications of X 400 for kidneys and X100 for livers.
gentamicin treatment significantly (p< 0.001) decreased kidney superoxide dismutase levels in treated animals compared to the control group. However, SOD increased significantly (p< 0.01; p<0.001 and p<0.001) in animals that received 100 mg/kg, 300 and 1000 mg/kg of extract respectively in combination with gentamicin (Figure 2). Gentamicin (80 mg/kg) reduced catalase significantly (p< 0.001) compared to the control group. Animals that received gentamicin with extract at 300 and 1000 mg/kg significantly (p< 0.001) improved catalase levels compared to the gentamicin-only group (Figure 3).

Effect of TIE and Gentamicin on myeloperoxidase (MPO) levels

A significant increase (p< 0.001) in tissue MPO levels was found in gentamicin-only treated groups compared to the control group. Rats treated with extract (300 and 1000 mg/kg) significantly (p< 0.01) showed decreased MPO formation when compared to the gentamicin-only group (Figure 5).

Effect of TIE and Gentamicin on lipid peroxidation

Lipid peroxidation was measured in terms of the amount of malondialdehyde (MDA) produced. Induction of oxidative stress with gentamicin significantly increased the amount of MDA produced in the gentamicin-only treated group (p< 0.001) when compared to the control group. MDA formation was however significantly obliterated in animals treated with gentamicin and the extract at 100 (p< 0.05), 300 (p< 0.01) and 1000 mg/kg (p< 0.001) compared to the gentamicin-only group (Figure 4).

Effect of TIE and Gentamicin on AST, ALT and GGT

The effect of the extract on gentamicin-induced liver damage was also assessed. Expectedly, significant elevation in AST (p< 0.05), ALT (p< 0.01) and GGT (p< 0.01) were observed in the gentamicin-only treated group compared to the control. The extract at 1000 mg/kg however, significantly (p<0.05) reversed the AST, ALT and the GGT levels compared to the gentamicin group. The extract at 300 mg/kg reduced only the ALT significantly (p<0.05) but not AST or ALT (Table 3).

Effect of TIE and Gentamicin on ALP, total bilirubin, and total protein levels

Induction of liver damage with gentamicin, significantly (p< 0.01) increased ALP when compared to the control. The extract at 1000 mg/kg significantly (p< 0.05) reduced ALP when compared to the gentamicin group. Total bilirubin increased significantly (p< 0.01) in the gentamicin-only treated group compared to the control.
The extract however, significantly reduced total bilirubin dose-dependently at 300 (p< 0.05) and 1000 mg/kg (p<0.01) compared to the gentamicin group. Total protein also showed a significant decrease in the gentamicin-only group (p< 0.001). The extract increased the total protein significantly (p<0.05) at 100mg/kg and 300 mg/kg compared to the control group. At 1000 mg/kg of extract total protein levels increased significantly (p< 0.01) compared to the gentamicin group (Table 4).

Effect of TIE and Gentamicin on globulin and albumin levels

Globulin levels were significantly low (p< 0.01) in the gentamicin-only group when compared to the control group. The extract at 300 and 1000 mg/kg significantly increased (p<0.05) globulin levels as compared to the gentamicin group. Albumin levels were also decreased in gentamicin (p<0.001) and p< 0.05 (100 and 300 mg/kg of extract) as compared to the control group. Extract at 1000 mg/kg however significantly elevated (p< 0.05) albumin levels as compared to the gentamicin group (Table 5).

Photomicrographs of rat liver showing the effect of TIE on gentamicin–induced hepatic damage

Assessment of liver histology showed normal liver histology in the control group. The gentamicin group showed congested hepatic sinusoids and blood vessels, apoptotic cells, severe vacuolization and necrosis. The extract at all doses showed improved the liver architecture with no visible lesions similar to the control group (Figure 7). The observations on the photomicrographs correlated well with the biochemical findings.
DISCUSSION

Medicinal plants play a crucial role as the first line treatment for various diseases especially in the West Africa sub-region due to their low cost, easy accessibility and minimal side effects (Annan et al., 2012; Gopalakrishnan and Dhanapal, 2014). In spite of the wide use of these plants for the cure of many diseases, the safety or potential toxicity of many of these plants has not been scientifically investigated (Ansah et al., 2009).

Among the plants used by herbalists include Terminalia ivorensis, which is used for ulcers, wounds, diuresis, general body pains, malaria, hemorrhoids and yellow fever (Burkill, 1985; Etukudo, 2003; Akinyemi et al., 2006; Quattara et al., 2013). It is also used as timber, anti-cough, anti-hyperglycemic, anti-parasitic anti-inflammatory and anti-arthritis as well as for skin and oral infections (Iwu and Anyanwu, 1982; Agbedahunsi, 2006; Johnny et al., 2014).

However, very little is known about its effect on nephrotoxic and hepatotoxic effects induced by gentamicin. The present study examined the possible nephroprotective and hepatoprotective effects of Terminalia ivorensis ethanolic stem bark extract against gentamicin-induced toxicity in Sprague-Dawley rats. Nephrotoxicity is an adverse effect of chemotherapy (Chatterjee et al., 2012). Drug or chemical induced nephrotoxicity depends on their build-up in renal cortex, affinity to kidneys and the kinetics of drug trapping process (Noorani et al., 2010). Gentamicin is a commonly used aminoglycoside for the cure of life threatening gram-negative infections. It usually accumulates in the renal proximal tubules and enhances hydrogen peroxide generation by the mitochondria (Noorani et al., 2010). The hydrogen peroxide produced causes the release of iron from mitochondria membranes which complexes with gentamicin to evoke the generation of reactive oxygen species (Afeefa et al., 2012).

This antibiotic has been shown to dose-dependently induce nephrotoxicity when administered for more than 7-10 days (Noorani et al., 2010; Geevasinga et al., 2006). Gentamicin at 80 mg/kg body weight administered intraperitoneally for two consecutive weeks in rats is known to cause significant nephrotoxicity (Qadir et al., 2011; Chatterjee et al., 2012). In this study, gentamicin (80 mg/kg administered for 14 days), induced renal dysfunction which was evidenced by significant increase in serum urea, creatinine and electrolytes with obvious histological injury.

Gentamicin at 80 mg/kg body weight administered intraperitoneally for two consecutive weeks in rats is known to cause significant nephrotoxicity (Qadir et al., 2011; Chatterjee et al., 2012). In this study, gentamicin (80 mg/kg administered for 14 days), induced renal dysfunction which was evidenced by significant increase in serum urea, creatinine and electrolytes with obvious histological injury.

The elevated levels of serum markers were significantly reduced in extract pretreated groups (300 and 1000 mg/kg) when compared to the gentamicin treated groups. The reduction in the renal markers (creatinine and urea) and serum electrolytes (sodium, potassium and chloride) demonstrated that the extract...
minimized cell damage caused by gentamicin thereby improving renal function. In several animal models, oxidative stress has been strongly linked to nephrotoxicity and hepatotoxicity. During toxicity, there is a build-up of reactive species, which results in an oxidative degradation of lipids, proteins and DNA (Giorgetti, 1998). Exposure of an organism to gentamicin causes a build-up of oxidative stress in the system (Chatterjee et al., 2012; Gowrisri et al., 2012), which is evidenced by diminished levels of GSH, SOD and catalase as well as increase in lipid peroxidation and cellular damage (Gowrisri et al., 2012).

In this study, as expected, gentamicin significantly decreased SOD, GSH and catalase levels and caused an increase in lipid peroxidation, myeloperoxidase and tissue damage. Extract pretreated animals showed significantly elevated superoxide dismutase (SOD), reduced glutathione (GSH) and catalase levels as compared to the gentamicin group. The formation of myeloperoxidase and the lipid peroxidation product (MDA) were also observed to be significantly reduced when compared to the gentamicin-only treated group. The activity shown by *Terminalia ivorensis* ethanolic stem bark extract might be due to its ability to induce antioxidant enzymes as observed in the present study.

Kidney sections of the control rats showed normal architecture of tubules while the gentamicin group showed severe glomerular degeneration, vacuolization, tubular casts and necrosis. However, pretreatment of rats with extract at 100 mg/kg showed a moderate reduction of kidney features of injury. Again, pretreatment of rats with extract at 300 and 1000 mg/kg showed further decrease in renal injury similar to control group. Pretreatment of rats with extract therefore offered a protective effect against renal damage caused by gentamicin.

Gentamicin has also been shown to induce hepatotoxicity secondary to nephrotoxicity and otoxicity. It induces hepatic injury by promoting the generation of free radicals which attack and destroy hepatocytes (Noorani et al., 2010; Al-Kenanny et al., 2012). Drug – induced hepatotoxicity is characterized by elevated levels of ALT, AST, ALP, GGT and bilirubin as well as destruction of tissue histology (Kurtovic and Riordan, 2003; Sivakrishnan and Kottaimuthu, 2013; Adejuwon et al., 2014).

High levels of these enzymes are consequences of hepatocytes destruction and increase in cellular permeability (Sivakrishnan and Kottaimuthu, 2013), whereas increased amount of bilirubin is indicative of loss of functional efficiency of hepatic cells in binding, conjugating and excreting bilirubin (Saroswat et al., 1993; Singh et al., 2005).

In this study, gentamicin showed significant increase in the levels of liver biomarkers (ALT, AST, ALP, GGT and bilirubin) and decrease levels of total proteins, globulin and albumin as well as cause severe liver destruction. However, co-administration of extract and gentamicin significantly normalized the levels of these markers and restored liver structure. This finding correlates with previous reports by Noorani et al., (2010) and Al-Kenannay et al., (2012), who also showed that gentamicin induces hepatotoxicity evidenced by elevated levels of serum enzymes. Ethanolic stem bark extract of *Terminalia ivorensis* significantly reduced the damage caused by gentamicin probably through a protective effect against cellular destruction and restoration of hepatocytes integrity.

CONCLUSION

Terminalia ivorensis has nephroprotective and hepatoprotective effects against gentamicin-induced toxicity by enhancing kidney and liver functions evidenced by reversal in the alteration of renal and hepatic markers of cellular damage and restoration of cellular structure. The mechanism of the nephro-protection and hepatoprotection of *T. ivorensis* proposed to be by the enhancement of the activities of antioxidants.

ACKNOWLEDGEMENTS

We are grateful to the technical staff of the Department of Pharmacology and KNUST Central lab especially Mr. Thomas Ansah, Dr. Edmund Ekuadze and Mr. Edmund Dery for their support.

REFERENCES

Conlon BJ, Aran JM and Erre JP. Attenuation of aminoglycoside induced cochlear damage with the metabolic antioxidant alphalipoic acid. *Hear Res,* 1999; 128: 40-44.

Luft FC and Kleit SA. Renal parenchymal accumulation of aminoglycoside antibiotics in rats. J Infect Dis, 1974; 130:656-659.

How to cite this article: