Evaluation of acute and chronic toxic effects of Algerian germander in Swiss albino mice

Imane KRACHE¹, Naouel BOUSSOUALIM¹, Noureddine CHAREF¹, Hayat TRABSA¹, Soraya OUHIDA², Faycel BENBACHA², Zahret El Youm DAAMOUCHE², Nadia BENZIDANE³, Abderrahmane BAGHIANI¹, Seddik KHENNOUF, Lekhmici ARRAR³

¹Laboratory of Applied Biochemistry, Faculty of Nature and Life Sciences, University Ferhat Abbas of Setif 1, Algeria. ²Hospitalo-Universitary Centre, CHU of Setif, Algeria.

ARTICLE INFO
Article history:
Received on: 25/07/2015
Revised on: 19/08/2015
Accepted on: 03/09/2015
Available online: 12/11/2015

Key words:
Teucrium polium L.
Methanolic extract. LD₅₀.
Biochemical parameters.
Acute and chronic toxicity.

ABSTRACT
Germander (Teucrium polium) is commonly used as medicinal plant in Algeria against a variety of human diseases. This study aims to evaluate toxic effects of T. polium methanol extract (TPME) in Swiss albino mice. Biochemical parameters, organs morphology and histopathology were investigated. TPME gave a LD₅₀ of 442.81 and 686.77 mg/kg of body weight (b.w.) in male and female mice, respectively. The acute treatment for seven days at a dose of 100 mg/kg of b.w. didn’t show any difference in body weight, relative mass and blood biochemical parameters. Histopathological examination revealed a moderate congestion in kidneys and an inflammatory infiltrate in liver. The chronic effect for 30 days at doses of 50 and 75 mg of TPME/kg of b.w. resulted in a significant increase of renal (urea), hepatic (aspartate aminotransferase and alanine aminotransferase) parameters, accompanied by a significant decrease of cholesterol level. Histopathological examination confirmed the biochemical tests by the observation of necrosis areas, ballooning degeneration and peliosis in liver sections and the presence of marked vascular congestion in kidneys in both sexes. In conclusion, the use of Teucrium polium L. may cause hepatotoxicity and nephrotoxicity after prolonged herb administration.

INTRODUCTION
Traditional medicine has maintained greater popularity all over the world and the use is rapidly on the increase. The use of herbs in treatment of disease has declined in the west, but it continues to exist throughout the developing countries (Mugisha et al., 2014). Mountain germander, Teucrium polium L (Ja’adeh in Arabic) is a shrub plant which grows wild in Mediterranean countries (El-Mokasabi, 2014). In folk medicine, Teucrium species have been used for their diuretic, diaphoretic, tonic, antipyretic, antispasmodic, anti ulcer and antidiabetic properties (Ljubuncic et al., 2006; Twaij and Al-Dujaili, 2014). Tea preparation of the aerial parts of the plant of T. polium is used for to treat abdominal colic, headache, diabetes and as an astringent (Dehghani et al., 2005). In experimental animal models the aqueous extract of the plant exhibited antispasmodic, anorexic, hypolipidemic effects (Gharaibeh et al., 1998; Rasekh et al., 2001). Most of these effects have been related to the volatile oil, flavonoids, phenylpropanoid glycosides, iridoid glycosides, terpenoids as diterpenes, monoterpenes and sesquiterpenes components (Guetat and Al-Ghamdi, 2014; Elmasri et al., 2014), principally furano-neoclerodanes (Fiorentino et al., 2011). One of these major compounds is teucrine A (Abdualmjid and Sergi, 2013). Teucrium polium is consumed as tea by many people in Mediterranean countries such as Jordanians, Iranians and Algerians for the treatment of several diseases, and there is no detailed informations on the liver status. However, many herbal medicinal plants including T. polium were found to induce fatal hepatic effects and severe acute liver failure with marked haematological and biochemical alterations after prolonged administration (Khleifat et al., 2002). Several cases of germander hepatitis were reported linked the herb consumption with hepatitis in man (Mazokopakis, 2004; Savvidou et al., 2007).

© 2015 Imane KRACHE et al. This is an open access article distributed under the terms of the Creative Commons Attribution License -NonCommercial-ShareAlike Unported License (http://creativecommons.org/licenses/by-nc-sa/3.0/).
All studies have been focused on aqueous or infusion (Zal et al., 2001; Rasekh et al., 2005), ethanolic (Al Ashban et al., 2006; Nematollahi-Mahani et al., 2007) and no toxicological studies has reported the in vivo toxic effects of methanolic extract, which is rich in flavonoids and terpenoids. The major flavonoids from T. polium methanolic extract are rutin and apigenin (Lewandowska et al., 2014).

It is well known that every drug has been associated with hepatotoxicity almost certainly due to the pivotal role of the liver in drug metabolism. Hepatic metabolism is, first and foremost, a mechanism that converts drugs and other compounds into products that are easily excreted and that usually have a lower pharmacologic activity than the parent compound (Sergi, 2013). A metabolite may have higher activity and/or greater toxicity than the original drug. Metabolites of the drugs that are excreted from kidneys may also cause cellular damage leading to kidney dysfunction (Atici et al., 2005).

In the present study, the focus was on the acute and chronic toxicity assays of Teucrium polium methanolic extract. The first concern was to determine how toxic effect of TPME may be after acute administration to the two sexes of mice as a model. The second is to investigate the target organ for the toxicity after chronic administration.

MATERIALS AND METHODS

Plant material

The green aerial parts of Teucrium polium were collected during June 2011 from Ouled Sidi Amor, Bordj Bouarreridj province in the northeast of Algeria, identified by Prof H. Laouer and a voucher specimen was deposited at the Department of vegetal biology and Ecology, University Ferhat Abbas, Setif 1, Algeria. The plant material was dried at room temperature and powdered. The obtained powder was extracted with absolute methanol for seven days. The methanolic extract was obtained after removing the solvent by rotary evaporation under reduced pressure at 45° C, then air dried and stored at -20° C until use (Arrar et al., 2013).

Animals

Experiments were performed on adult male and female Swiss albino mice weighting 25 to 30 g. The animals obtained from ‘Institut Pasteur d’Algérie’, Algiers, were kept for one week for acclimatization before the commencement of experiment. Mice were kept in polycarbonate cages under standard conditions (temperature 24 ± 3°C) with 12 h light/dark cycle. They were provided with standard pellet diet and water ad libitum. All procedures were performed in compliance with laws and institutional guidelines.

Acute toxicity assay

In order to study the toxic effect or changes in normal behavior, eight (8) groups of male and female mice (n = 10) were used. The animals were fasted 24 hours before the treatment. The TPME was freshly dissolved in normal saline solution 0.9% (vehicle) at the corresponding concentration immediately before administration (Rasekh et al., 2005). The acute toxicity of the plant was studied by preparing four different concentrations of the TPME: 100, 150, 200, 250, 300, 350 and 400 mg/kg and administered intraperitonealaneously to seven groups of animals. The eighth group was taken as a control and was given 100 μl of normal saline. The behavioral changes, posture and mortality were checked for 24 hours. Alive mice were kept under observation for 14 days (Umamaheswari et al., 2007). Mortality was recorded daily and the LD50 value was estimated by computerized techniques (Abu Sitta et al., 2009).

However, for the acute treatment, male and female mice were organized into two groups of 8 animals per dose (Khlefat et al., 2002). The first one was given 100 μl normal saline and taken as a control and the second one was given a single intraperitoneal dose of 100 mg of TPME / Kg b.w. (100 μl) for 7 days (Bouzidi et al., 2011 with slight modifications).

Chronic toxicity treatment

Animals were divided into three groups (n = 8). The first group was given normal saline and taken as a control. The second and third ones were given a single intraperitoneal dose of 50 or 75 mg of TPME / Kg b.w. (volume 100 μl) once daily for a month. Body weight, food consumption and clinical observations were recorded daily. 24 h after the last treatment, all treated animals were fasted for about 3 hours and sacrificed by decapitation under anesthesia. Blood samples were collected in heparinized tubes and plasma were obtained by centrifugation at 4000 g for 5 min. at 4°C then stored at -20° C until use. Organs including testes, ovaries, liver, kidneys, heart, lungs and brain were obtained, weighed and placed in formalin for histopathological examination (Abu Sitta et al., 2009). Paraffin sections of liver and kidney were made and stained with hematoxylin/eosin then microscopic evaluation was carried out in the laboratory of Anatomo-pathology, CHU of Setif, Algeria.

Biochemical analysis

The collected plasma samples obtained from acute and chronic toxicity experiments were assayed for biochemical parameters, including glucose (Glu), urea, creatinin (Creat), Na, K, cholesterol (Chol), triglycriterides (TG), aspartate aminotransferase (AST), alanine aminotransferase (ALT), alcaline phosphatase (ALP), measured with Beckman Coulter Synchro CX-9 Clinical System ALX, at the Central Laboratory of the CHU of Setif, Algeria.

Statistical analysis

Statistical analysis were performed using Student’s t-test for significance and analysis of variance univariate (ANOVA) followed by Dunnett’s test for the multiple comparison of the effect of different extract doses. Values of p < 0.05 were considered statistically significant. The comparison of the averages and the variances was done using « Graphpad Prism» version 5.0. LD50 is determined using sm» version 5.0.
RESULTS

Lethal toxicity of TPME

Males and females mice were individually observed during the first 30 min and regularly during the first 24 h after TPME administration. The estimation of LD₅₀ value of TPME, using computerized technique was about 442.81 and 686.77 mg/kg of body weight in male and female mice, respectively (Table 1). Survived mice were apparently healthy.

Table 1: Toxic Effect of TPME in mice. TPME was administered as single intraperitoneal dose to groups of mice (n=10). All treated mice were carefully examined for any signs of toxicity during a period of 14 days.

<table>
<thead>
<tr>
<th>Dose (mg/kg)</th>
<th>Signs and symptoms</th>
<th>% of Death</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Male</td>
</tr>
<tr>
<td>0</td>
<td>Normal</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>stressed mice</td>
<td>0</td>
</tr>
<tr>
<td>150</td>
<td>piloerection</td>
<td>0</td>
</tr>
<tr>
<td>200</td>
<td>piloerection, stressed mice</td>
<td>10</td>
</tr>
<tr>
<td>250</td>
<td>piloerection, stressed mice</td>
<td>10</td>
</tr>
<tr>
<td>300</td>
<td>Piloerection, immobilization of the mice</td>
<td>10</td>
</tr>
<tr>
<td>350</td>
<td>Irritability, immobilization of the mice</td>
<td>20</td>
</tr>
<tr>
<td>400</td>
<td>Paralysis, Tremor, Labored breathing, Death</td>
<td>50</td>
</tr>
</tbody>
</table>

Effects of T. polium on body and organ weights

In general, no significant differences were observed in body weight of both sexes between treated and control. Nevertheless, body weight of male mice was significantly decreased at the first week compared to those of the controls group in chronic conditions but after, they restore their body weight normally during the period of experimentation. Percentages of changes in body weights during the chronic administration period are shown in Figure 1. The macroscopic analysis of the target organs in acute and chronic treatment of both animals (liver, kidneys, lung, heart, brain and spleen) did not show significant changes in color, texture and values compared with the control group.

Effects of TPME on biochemical parameters

In acute treatment, no significant changes were observed in both sexes. The effect of chronic treatment with 100 mg of TPME/kg b.w., for 30 days on biochemical parameters is shown in Table 2. Urea, AST and ALT in female and AST in male were significantly increased after chronic treatment, and a significant decrease in cholesterol level in both sexes compared to controls (Table 2).

Histopathological examination

The observation of the histological slices of kidneys of treated mice compared to controls are presented in Figures 2, 3. The examination of kidneys revealed presence of a vascular congestion around vessels in acute and chronic intraperitoneal administration of TPME in both sexes. Histological examination of the liver of treated animals in acute toxicity conditions showed portal congestion and inflammatory infiltrates. It also showed important inflammatory infiltrates of mono and polynuclear neutrophils around vessels and in sinusoids, a vascular congestion, necrosis, peliosis and ballooning degeneration was also observed in both animals treated in chronic toxicity especially with 75 mg/kg (Fig. 4, 5).

Table 2: Serum biochemical parameters for male and female mice intraperitoneally treated by TPME for 30 days.

<table>
<thead>
<tr>
<th>Biochemical parameters</th>
<th>Control</th>
<th>Male 50 mg/kg</th>
<th>75 mg/kg</th>
<th>Control</th>
<th>Female 50 mg/kg</th>
<th>75 mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urea (gr/ L)</td>
<td>ND</td>
<td>1.08 ± 0.04**</td>
<td>0.97 ± 0.04*</td>
<td>0.98 ± 0.04*</td>
<td>ND</td>
<td>0.97 ± 0.04*</td>
</tr>
<tr>
<td>Chol (gr/ L)</td>
<td>1.47 ± 0.09</td>
<td>1.62 ± 0.14</td>
<td>1.24 ± 0.01</td>
<td>1.24 ± 0.15</td>
<td>ND</td>
<td>1.05 ± 0.15</td>
</tr>
<tr>
<td>TG (gr/ L)</td>
<td>1.60 ± 0.07</td>
<td>1.53 ± 0.06</td>
<td>1.05 ± 0.05</td>
<td>1.45 ± 0.15</td>
<td>ND</td>
<td>1.05 ± 0.15</td>
</tr>
<tr>
<td>ALP (UI/L)</td>
<td>114.5 ± 18.08</td>
<td>71.20 ± 10.87</td>
<td>251.0 ± 10.16</td>
<td>252.3 ± 17.05</td>
<td>ND</td>
<td>250.5 ± 17.05</td>
</tr>
<tr>
<td>AST (UI/L)</td>
<td>193.7 ± 15.93</td>
<td>196.2 ± 14.88</td>
<td>191.0 ± 8.90</td>
<td>243.2 ± 8.003**</td>
<td>ND</td>
<td>252.3 ± 17.05</td>
</tr>
<tr>
<td>ALT (UI/L)</td>
<td>33.3 ± 1.54</td>
<td>32.80 ± 7.08</td>
<td>46.43 ± 2.60</td>
<td>59.13 ± 1.06**</td>
<td>ND</td>
<td>50.67 ± 4.38</td>
</tr>
<tr>
<td>Creat (mg/L)</td>
<td>10.46 ± 1.15</td>
<td>10.06 ± 2.29</td>
<td>9.83 ± 0.67</td>
<td>11.92 ± 0.56</td>
<td>ND</td>
<td>12.37 ± 1.94</td>
</tr>
<tr>
<td>Glu (gr/ L)</td>
<td>0.99 ± 0.05</td>
<td>0.94 ± 0.09</td>
<td>1.11 ± 0.17</td>
<td>1.31a ± 0.17</td>
<td>ND</td>
<td>1.34a ± 0.25</td>
</tr>
<tr>
<td>Na (meq/l)</td>
<td>171.70 ± 2.03</td>
<td>164.10 ± 4.07</td>
<td>172.6 ± 3.37</td>
<td>172.9 ± 0.79</td>
<td>ND</td>
<td>169.3 ± 5.84</td>
</tr>
<tr>
<td>K (meq/l)</td>
<td>5.47 ± 2.22</td>
<td>5.743 ± 0.27</td>
<td>6.23 ± 0.25</td>
<td>5.50 ± 0.25</td>
<td>ND</td>
<td>6.23 ± 0.96</td>
</tr>
</tbody>
</table>

Values are expressed as mean (n = 8) ± SEM ,* p ≤ 0.05, ** p ≤ 0.01. ND: not determinated.

Fig. 1: Changes of body weight of male (A) and female (B) mice treated with Teucrium polium methanolic extract.
DISCUSSION

In the literature reviewed, no data referring to the acute and chronic activity of *Teucrium polium* from Algeria *in vivo*. The present study investigated the effects of TPME treatment with sub-lethal doses of the herb on the biochemical composition of the blood and histological appearance of the liver and kidney in mice. The LD$_{50}$ for TPME was 442.81 and 686.77 mg/kg of body weight in male and female mice respectively. In view of the results of the LD$_{50}$ (50<DL$_{50}$<500 mg/kg), according to Hodge and Sterner (1949), TPME can be classified in the category of moderately toxic products. All mice treated with different concentrations of TPME were alive during the 14 days of observation and did not produce any other changes in behavior, food and water intake (Twaij and Al-Dujaili, 2014).

Biochemical parameters showed a significant difference in female urea level at 75 mg/kg. Urea increases could be explained by an increase in degradation of protein compounds, but also by an injure of renal function (Benouadah et al., 2012). These results agree with Khleifat *et al.* (2002), Rasekh *et al.* (2005) and Iriadam *et al.* (2006). Really, kidneys were clearly damaged and their histological aspects indicated a congestion and discreet inflammatory infiltrates in the two sexes. These damages were previously observed by researchers (Khleifat *et al.*, 2002; Mohammed, 2010), who demonstrated the accentual phytotoxic effects on kidneys of male rat and mice treated with *Teucrium polium* ethanolic and aqueous extracts respectively.

The Cholesterol level was appreciably decreased after chronic treatment in both sexes using the two doses tested of TPME, it concords with works of Abu Sitta *et al.*, (2009). Shahraki *et al.* (2007) showed that suspension and tea preparation of *T. polium* led to an increase in TG and cholesterol. These controversies may be due to the difference in method of *T. polium* extraction and routes of its administration (Vahidi *et al.*, 2010).
Liver enzymes especially AST (in the two sexes) and ALT (in female) were very significantly increased at 50 mg/kg of TPME. It is attributed a hepatotoxic effect of this plant and suggested that it is not suitable to use in humans (Vahidi et al., 2010). Histopathological result of liver sections confirmed these effects indicating important inflammatory infiltrates of polynuclears around vessels and in sinusoids, a vascular congestion, necrosis and peliosis. These results supported the study of Al-Ashban et al. (2006) and Rasekh et al. (2005). Mazokopakis et al. (2005) reported that a dysfunction of the liver appears after one month of treatment by an infusion of *T. polium*. In parallel, Savvidoua et al. (2007) report two cases of lethal hepatitis due to the treatment containing germander.

The clinical pictures of most human cases presented with hepatitis reported in the literature exhibited elevation in plasma levels of liver enzymes such as AST and ALT. The liver lesions of these cases (Zal et al., 2001) were similar to mice model. In fact, Mattei et al. (1995) reported a massive hepatocyte necrosis predominantly in the centrilobular areas of the liver in a patient with acute liver failure after consumption of *T. polium*. Although, the mechanism of hepatotoxicity of *T. polium* is not well elucidated, teucrine A isolated from *Teucrium chamaedrys* (Chen et al., 2011) and several diterpenoids neoclerodans, present in aerial parts, were suspected as hepatotoxic precursors of this plant (Fiorentino et al., 2011). In conclusion, TPME perturb biochemical serum parameters related to renal and hepatic function after prolonged administration. The liver histology can indicate images of an acute or chronic hepatitis. People should consider about the use *T. polium*, particularly if they are not officially informed of their possible unfavorable reactions.

ACKNOWLEDGMENTS

This work was supported by the Algerian Ministry of Higher Education and Scientific Research (MESRS) and by the Algerian Thematic KH for the Research in Health Sciences (ATRSSH). We would like to thank Pr A. Bouzidi, Department of Biochemistry, University Setif 1, Pr. A. Touabti and entire team of laboratory of Anapath, CHU of Setif, for their help in conducting clinical tests.

REFERENCES

How to cite this article: