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Chemical investigation of Cycas aenigma, a plant endemic to the Philippines, led to the isolation of a rare 

neolignan, 2-[2-hydroxy-5-(3-hydroxypropyl)-3-methoxyphenyl]-1-(4-hydroxy-3-methoxyphenyl)propane-1,3-

diol (1), pinoresinol (2), and fatty alcohols (3) from the leaflets; and triglycerols (4), and a mixture of β-sitosterol 

(5a) and stigmasterol (5b) from the petiole and rachis. The structure of 1 was elucidated by extensive 1D and 2D 

NMR spectroscopy, while those of 2-5b were identified by comparison of their 
1
H and/or 

13
C NMR data with 

literature data. 
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INTRODUCTION 
 

Cycas resemble palms in morphology and are 

commonly called sago palm. They are considered as fossil plants 

though they may have evolved only about 12 million years ago 

(Nagalingum et al., 2011).  They are widely distributed in the 

Tropics (Donaldson, 2003) where they grow on volcanic, 

limestone, ultramafic, sandy, or even water-logged soils in 

grassland and forest habitats (Madulid and Agoo, 2009). The 

demand of Cycas species for domestic and international 

horticultural trade, grassland and forest fires, and conversion of 

their natural habitats to settlements and other land uses have 

threatened to varying degrees the wild populations of the genus 

(IUCN, 2010).  Some of these threatened species are C. curranii        

. 
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(Agoo et al., 2010), C. wadei (Hill, 2010) and C. zambalensis as 

Critically Endangered (CR) (Agoo et al., 2010), C. riuminiana as 

Endangered (E) (Agoo et al., 2010), and C. saxatilis as Vulnerable 

(V) (Bosenberg JD. 2010). There are no reported chemical and 

biological activity studies on C. aenigma.  However, some Cycas 

species have been studied for their chemical constituents and 

biological activities. Cycasin, a carcinogenic toxin was isolated 

from the most studied Cycas species, C. revoluta Thunb. and C. 

circinalis L. (Nishida et al., 1955; Laqueur et al., 1963).  

Biflavonoids, lignans, flavan-3-ols, flavone-C-glucosides, nor-

isoprenoids, and a flavanone were obtained from the methanolic 

extract of the leaflets of C. circinalis L. and the chloroform extract 

of C. revoluta Thunb. Three of the biflavonoids exhibited 

moderate activity against S. aureus and methicillin-resistant S. 

aureus (Moawad et al., 2010). Moreover, the leaves of C. revoluta 

Thunb. and C. circinalis L. yielded lariciresinol,  naringenin  and  

biflavonoids  (Ferreira et al, 2009).   

http://creativecommons.org/licenses/by-nc-sa/3.0/
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β-Sitosterol β-D-glucoside, stigmasterol β-D-glucoside, 

β-sitosterol, and stigmasterol were obtained from the seeds of C. 

micronesica K. D. Hill (Marler et al., 2006), while C. beddomei 

afforded a new biflavonoid, along with pinoresinol, hinokiflavone, 

and amento flavones (Das et al., 2006; Das et al., 2005).  The 

leaves of C. panzhihuaensis yielded a new flavone, along with 2,3-

dihydrohinokiflavone, a biflavone, vanillic acid, sitosterol and 

daucosterol (Zhou et al., 2002). Chavicol β-rutinoside, 

amentoflavone, podocarpusflavone A, a biflavone, β-sitosterol, 

daucosterol and palmitic acid were isolated from the methanolic 

extracts of the stems, flowers and seeds of C. panzhihuaensis L. 

(Zhou et al., 1999).   This study is part of our research on the 

chemical constituents of the genus Cycas.  We earlier reported the 

isolation of squalene, β-sitosterol, stigmasterol, and triglycerides 

from the sarcotesta; β-sitosterol, stigmasterol, triglycerides and 

phytyl fatty acid esters from the endotesta; β-sitosterol, 

stigmasterol, and triglycerides, and β-sitosteryl fatty acid esters 

from the sclerotesta; and β-sitosteryl fatty acid esters from the   

bark of   Cycas sancti-lasallei (Ng et al., 2015).  We report herein 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the isolation of 2-[2-hydroxy-5-(3-hydroxypropyl)-3-

methoxyphenyl]-1-(4-hydroxy-3 methoxyphenyl) propane-1,3-diol 

(1), pinoresinol (2), and fatty alcohol (3) from the leaflets; 

andtriglycerols (4), and a mixture of β-sitosterol (5a) and 

stigmasterol (5b) from the petiole and rachis. To the best of our 

knowledge this is the first report on the isolation of these 

compounds from Cycas aenigma. 

 
MATERIALS AND METHODS 

 

General experimental procedure 

NMR spectra were recorded on a Varian VNMRS 

spectrometer in CDCl3 at 600 MHz for 
1
H NMR and 150 MHz for 

13
C NMR spectra.  Column chromatography was performed with 

silica gel 60 (70-230 mesh).  Thin layer chromatography was 

performed with plastic backed plates coated with silica gel F254 and 

the plates were visualized by spraying with vanillin/H2SO4 

solution followed by warming.  
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Plant material 

Cycas aenigma leaflets and petiole and rachis were 

collected in 2013.  Voucher specimens were collected and 

authenticated by one of the authors (EMGA) and deposited in the 

De La Salle University-Manila Herbarium (DLSUH). 

 

General isolation procedure 

A glass column 18 inches in height and 1.0 inch internal 

diameter was used for the chromatography of the crude extracts. 

Twenty milliliter fractions were collected. All fractions were 

monitored by thin layer chromatography. Fractions with spots of 

the same Rf values were combined and rechromatographed in 

appropriate solvent systems until TLC pure isolates were obtained. 

A glass column 12 inches in height and 0.5 inch internal diameter 

was used for the rechromatography of smaller fractions from the 

first column. Five milliliter fractions were collected.  Final 

purifications were conducted using Pasteur pipettes as columns.  

One milliliter fractions were collected. 

 

Isolation of the chemical constituents of the leaflets 

The air-dried bark of C. aenigma (105 g) were ground in 

a blender, soaked in CH2Cl2 for 3 days and then filtered.  The 

solvent was evaporated under vacuum to afford a crude extract 

(2.3 g) which was chromatographed using increasing proportions 

of acetone in CH2Cl2 at 20% increment. The 20% acetone in 

CH2Cl2 fraction was rechromatographed (2 ×) using 15% EtOAc 

in petroleum ether to afford 3 (3 mg) after washing with petroleum 

ether.   

The 80% acetone in CH2Cl2 fraction was 

rechromatographed (4 ×) in CH3CN:Et2O:CH2Cl2 (1:1:8 by 

volume) to yield 2 (9 mg) after trituration with petroleum ether. 

The 90% acetone in CH2Cl2 fraction was rechromatographed (4 ×) 

using CH3CN:Et2O:CH2Cl2 (2.5:2.5:5, v/v) to afford 1 (12 mg) 

after trituration with petroleum ether. 

 

Isolation of the chemical constituents of the petiole and rachis 

The air-dried petiole and rachis of C. aenigma (47 g) 

were ground in a blender, soaked in CH2Cl2 for 3 days and then 

filtered.  The solvent was evaporated under vacuum to afford a 

crude extract (0.7 g) which was chromatographed using increasing 

proportions of acetone in CH2Cl2 at 10% increment.  The 20% 

acetone in CH2Cl2 fraction was rechromatographed (4 ×) using 

7.5% EtOAc in petroleum ether to yield 4 (8 mg). The 30% 

acetone in CH2Cl2 fraction was rechromatographed using 15% 

EtOAc in petroleum ether to afford a mixture of 5a and 5b in a 1:1 

ratio (4 mg) after washing with petroleum ether.   

 

2-[2-Hydroxy-5-(3-hydroxypropyl)-3-methoxyphenyl]-1-(4-

hydroxy-3-methoxyphenyl)propane -1,3-diol (1) 
1
H-NMR (600 MHz, CDCl3): δ 6.92 (1H, d, J = 1.8 Hz, 

H-2), 6.86 (1H, d, J = 8.5 Hz, H-5), 6.90 (1H, dd, J = 7.8, 1.8 Hz, 

H-6), 5.53 (1H, d, J = 7.2 Hz, H-7), 3.59 (1H, m, H-8), 3.89 (1H, 

dd, J =  10.8, 4.8Hz, H-9), 3.95 (1H, dd, J = 10.8, 6 Hz, H-9), 6.66 

(1H, s, H-4'), 6.67 (1H, s, H-6'), 2.66 (2H, t, J = 7.2 Hz, CH2-7'), 

1.88 (2H, m, CH2-8'), 3.68 (2H, t, J = 6.6 Hz, CH2-9'), 3.85 (3H, s, 

3-OCH3), 3.87 (3H, s, 3'-OCH3); 
13

C NMR (150 MHz, CDCl3): δ 

133.08 (C-1), 108.79 (C-2),146.62 (C-3), 145.61 (C-4), 114.25 (C-

5), 119.43 (C-6), 87.88 (C-7), 53.79 (C-8), 63.91 (C-9), 127.66 (C-

1'), 146.56 (C-2'), 144.20 (C-3'), 115.89 (C-4'), 135.41 (C-5'), 

112.43 (C-6'), 32.01 (C-7'), 34.64 (C-8'), 62.32 (C-9'), 55.98, 55.99 

(3-OCH3, 3'-OCH3). 

 

Pinoresinol (2) 
1
H NMR (600 MHz, CDCl3): δ 4.72 (1H, d, J = 4.2 Hz, 

H-1), 3.08 (1H, dd, J = 4.8, 6.6 Hz, H-2), 3.86 (1H, dd, J = 3.6, 9.0 

Hz, H-3), 4.25 (1H, dd, J = 7.2, 9.0 Hz, H-3), 6.89 (1H, d, J = 1.8, 

H-2'), 6.89 (1H, d, J = 6.6, H-5'), 6.82 (1H, dd, J = 7.8, 1.8 Hz, H-

6'), 3.91 (3H, s, -OCH3); 
13

C NMR (150 MHz, CDCl3): δ 85.86 (C-

1), 54.16 (C-2), 71.66 (C-3), 132.91 (C-1'), 108.56 (C-2'), 146.68 

(C-3'), 145.22 (C-4'), 114.23 (C-5'), 118.96 (C-6'), 55.95 (3'-

OCH3).  

 

Fatty Alcohols (3) 
1
H NMR (600 MHz, CDCl3): δ 3.56 (t, J = 7.2 Hz, 

terminal CH2OH), 2.00 (allylic CH2), 1.56 (m, α-CH2), 1.23-1.34 

(br s, CH2), 0.86 (t, J = 7.2 Hz, terminal CH3); 
13

C NMR (150 

MHz, CDCl3): δ 72.04 (C-1), 37.48, 31.92, 31.89, 29.70, 29.68, 

29.66, 29.63, 29.62, 29.57, 29.36, 29.32, 25.64, 22.69, 22.68 

(CH2)n, 14.12 (CH3). 

 

Triacylglycerols (4)  
1
H NMR (600 MHz, CDCl3): δ 4.28 (2H, dd, J =   4.2, 

12.0 Hz, glyceryl CH2O), 4.12 (2H, dd, J =   6.0, 12.0 Hz, glyceryl 

CH2O), 5.32 (1H, m, glyceryl CHO), 2.31 (6H, t, J = 7.5Hz, α-

CH2), 5.33 (m, olefinic H), 2.75 (double allylic CH2), 1.98-2.05 

(allylic, CH2), 1.23-1.35 (CH2), 0.87 (t, J = 6.6 Hz, CH3);
 13

C 

NMR (150 MHz, CDCl3): δ 62.09 (glyceryl CH2), 68.87 (glyceryl 

CH), 173.26, 173.30 (C = O α), 172.84 (C = O β), 34.02, 34.05, 

34.19 (C-2), 24.83, 24.86 (C-3), 29.05, 29.08, 29.12 (C-4), 29.18, 

29.20, 29.27 (C-5), 29.48 (C-6), 22.57, 22.69 (C-8), 130.23, 

130.01, 129.70 (C-9), 127.89, 128.06, 129.68 (C-10), 25.62, 27.17, 

27.19, 27.22, 29.32, 29.34, 29.36, 29.52, 29.62, 29.66, 29.70, 

29.76 (CH2), 31.52, 31.90, 31.92 (CH2), 14.07, 14.12 (terminal 

CH3). 

 

β-Sitosterol (5a) 
13

C NMR (150 MHz, CDCl3): δ 37.2 (C-1), 31.7 (C-2), 

71.8 (C-3), 42.3 (C-4), 140.7 (C-5), 121.7 (C-6), 31.9(C-7), 31.9 

(C-8), 50.1 (C-9), 36.5 (C-10), 21.1 (C-11), 39.8 (C-12), 42.3 (C-

13), 56.8(C-14), 24.3 (C-15), 28.2 (C-16), 56.0 (C-17), 12.0 (C-

18), 19.4 (C-19), 36.1 (C-20), 18.8 (C-21), 33.9 (C-22), 26.0 (C-

23), 45.8 (C-24), 29.1 (C-25), 19.0 (C-26), 19.8 (C-27), 23.0 (C-

28), 11.9 (C-29). 

 

Stigmasterol (5b) 
13

C NMR (150 MHz, CDCl3): δ 37.2 (C-1), 31.7 (C-2), 

71.8 (C-3), 42.3 (C-4), 140.7 (C-5), 121.7 (C-6), 31.9 (C-7), 31.9 

(C-8), 50.1 (C-9), 36.5 (C-10), 21.1 (C-11), 39.8 (C-12), 42.3 (C-
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13), 56.8 (C-14), 24.3 (C-15), 29.1 (C-16), 56.0 (C-17), 12.0 (C-

18), 19.4 (C-19), 40.5 (C-20), 21.1 (C-21), 138.3 (C-22), 129.3 (C-

23), 51.2 (C-24), 31.9 (C-25), 21.1 (C-26), 19.0 (C-27), 25.4 (C-

28), 12.1 (C-29). 

 

RESULTS AND DISCUSSION 
 

Silica gel chromatography of the dichloromethane 

extracts of C. aenigma yielded 1-3 from the leaves; and 4-5b from 

the petiole and rachis. The structure of 1 was elucidated by 

extensive 1D and 2D NMR spectroscopy and confirmed by 

comparison of its NMR data with those reported in the literature 

for 2-[2-hydroxy-5-(3-hydroxypropyl)-3-methoxyphenyl]-1-(4-

hydroxy-3-methoxyphenyl)propane-1,3-diol (1) (Koyama
 
et al., 

2006).  Compounds 2-5b were identified by comparison of their 

NMR data with those reported in the literature for pinoresinol (2) 

(Ragasa
 
et al., 2000), fatty alcohols (3) (Ragasa

 
et al., 2014a), 

triglycerides (4) (Ragasa
 

et al., 2015), β-sitosterol                            

(5a) (Ragasa
 
et al., 2014b), and stigmasterol (5b) (Jamal et al., 

2008). 

2-[2-Hydroxy-5-(3-hydroxypropyl)-3-methoxyphenyl]-1-

(4-hydroxy-3-methoxyphenyl)propane-1,3-diol (1) was first 

reported as a constituent of Taxus yunnanensis (Koyama et al., 

2008). This neolignan was tested for inhibitory effects                          

on induced histamine release from the human basophilic cell line, 

KU812.  Results showed that 1 did not exhibit any                

antiallergic activity at a 1.5 μg/ml concentration (Koyama et al., 

2008). On the other hand, pinoresinol (2) was found to have 

antioxidant and Ca
2+

 antagonist properties (Páska et al., 2002). It 

was reported to exhibit strong antiinflammatory properties by 

acting on the NF-κB signaling pathway (During
 
et al, 2012). 

Furthermore, 2 attenuates inflammatory responses of microglia 

and could be useful in modulation of inflammatory status in brain 

disorders (Jung
 
et al., 2010). Lignan 2 was shown to possess 

fungicidal activities and therapeutic potential as an antifungal 

agent for the treatment of fungal infectious diseases in humans 

(Hwang et al., 2010). It exhibited inhibitory activity against rat 

intestinal maltase with an IC50 value of 34.3 μM (Wikul  et al., 

2012). Long-chain fatty alcohols (3) were reported to exhibit a 

protective effect on some mediators involved in the inflammatory 

damage development (Fernandez-Arche et al., 2015). On the other 

hand, triacylglycerides (4) exhibited antimicrobial activity against 

S. aureus, P. aeruginosa, B. subtilis, C. albicans, and T. 

mentagrophytes (Ragasa et al., 2013). Another study reported that 

4 showed a direct relationship between toxicity and increasing 

unsaturation, which in turn correlated with increasing 

susceptibility to oxidation (Ferruzzi and Blakeslee, 2007). β-

Sitosterol (5a) was observed to have growth inhibitory effects on 

human breast MCF-7 and MDA-MB-231 adenocarcinoma cells 

(Awad
 
et al., 2007). It was shown to be effective for the treatment 

of benign prostatic hyperplasia (Jayaprakasha et al., 2007).  

Compound 5a was also reported to attenuate β-catenin and PCNA 

expression, as well as quench radical in vitro, making it a potential 

anticancer drug for colon carcinogenesis (Baskar et al., 2010). It 

can inhibit the expression of NPC1L1 in the enterocytes to reduce 

intestinal cholesterol uptake (Jesch
 
et al., 2009). It was reported to 

induce apoptosis mediated by the activation of ERK and the  

down-regulation of Akt in MCA-102 murine fibrosarcoma cells 

(Moon
 
et al., 2007). On the other hand, stigmasterol (5b) shows 

therapeutic efficacy against Ehrlich ascites carcinoma bearing 

mice while conferring protection against cancer induced altered 

physiological conditions (Ghosh
 
et al., 2011). Compound 5b 

lowers plasma cholesterol levels, inhibits intestinal cholesterol and 

plant sterol absorption, and suppresses hepatic cholesterol and 

classic bile acid synthesis in Winstar as well as WKY rats (Batta
 
et 

al., 2006). Other studies reported that 5b showed cytostatic 

activity against Hep-2 and McCoy cells (Gómez
 
et al., 2001), 

markedly inhibited tumour promotion in two stage carcinogenesis 

experiments (Kasahara et al., 1994), and exhibited antimutagenic 

(Lim
 
et al., 2005), topical anti-inflammatory (García et al., 1999), 

antiosteoarthritic (Gabay
  

et al., 2010) and antioxidant (Panda
 
et 

al., 2009) activities.  

 

CONCLUSION 
 

The dichloromethane extracts of Cycas aenigma, a plant 

endemic to the Philippines with no reported chemical and 

biological activity studies, afforded a rare neolignan, 2-[2-

hydroxy-5-(3-hydroxypropyl)-3-methoxyphenyl]-1-(4-hydroxy-3-

methoxyphenyl)propane-1,3-diol(1), pinoresinol (2), fatty alcohols 

(3),triacylglycerols (4), β-sitosterol (5a), and stigmasterol (5b).  

Compounds 2-5b were reported to exhibit diverse biological 

activities.  
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