# Ethnomedicine of Santal tribe living around Susunia hill of Bankura district, West Bengal, India: The quantitative approach

Chowdhury Habibur Rahaman\*, Suman Karmakar

Department of Botany, Visva-Bharati University, Santiniketan-731235, West Bengal, India.

# ARTICLE INFO

Article history: Received on: 27/10/2014 Revised on: 22/11/2014 Accepted on: 04/01/2015 Available online: 27/02/2015

#### Kev words:

Susunia hill, ethnomedicine, Informant consensus, factor, Fidelity level, Preference ranking exercise.

## ABSTRACT

The present paper deals with the observations on ethnomedicinal uses of wild plants by the Santal tribal people of villages surrounding the Susunia hill of Bankura district, West Bengal. Data were collected by interviewing Santal medicine men and knowledgeable persons with the help of semi-structured and open-ended questionnaire. The data have been analyzed employing suitable statistical tools like Informant Consensus value for Plant Part (CPP), Consensus Factor (Fic), Fidelity Level (FL%), Preference ranking exercise, Importance value (IVs) and Pearson Correlation Coefficient (PCC). Altogether 25 plants have been recorded which are used by the Santal people in formulation of 40 ethnomedicinal preparations for curing 27 types of diseases. Leaves secured the highest CPP value (0.33). Circulatory system disorder, Nervous System disorder and Birth/Puerperium disorder secured the highest Fic value (1). Abrus precatorius L., Ampelocissus latifolia (Roxb.) Planch., etc. secured the highest FL value(100%). Curcuma longa L. has been identified as most preferred species by preference ranking exercise. The highest score of IVs observed in Borassus flabellifer L., Cajanus cajan (L.) Millsp.,etc. The PCC between IVs and FL was 0.679 showing moderate positive significant association. Bioassay of these ethnomedicinal remedies has to be carried out further for their scientific validation.

# INTRODUCTION

Ethnomedicine has been playing very important role in human health care since time immemorial. This practice of health care is based on belief and experience of the ethnic people, which is a part of their tradition and culture. There has been an increased demand of herbal drug in international trade because herbal medicines are cheap, more effective, easily available and supposed to have no side effects. This branch of ethnobotany is now getting more importance in the field of pharmacognosy for its basic information regarding medicinal plants, their various traditional uses, way of preparations, doses, and mode of administration of crude drugs. In our national agenda, documentation, conservation, preparation of database of medicinal plants and their cultivation are now priority issues. Number of medicinal plants is steadily being increased in the traditional pharmacopoeias of our country through extensive

Dr. Chowdhury Habibur Rahaman ,Associate Professor, Department of Botany, Visva-Bharati University, Santiniketan- 731235, West Bengal, India. E-mail: habibur\_cr@rediffmail.com

research work in the field of ethnobotany. The information about prescription, pharmacology, attitude towards diseases, diagnosis, etc. of the age-old tribal medicine system are still lying unclaimed in different parts of the district Bankura. A perusal of literature shows that documentation of ethnobotanical works from this district has been made by different workers (Acharya and Mukherjee, 2010a, b; Banerjee et al., 2013; Basu, 2003; Choudhuri et al., 1982; Ghosh et al., 1996; Ghosh, 1999, 2002, 2003a, b, 2006, 2008; Kar, 1999; Mallick and Mallick, 2012; Mallick et al., 2012; Mondal and Biswas, 2012; Mukherjee and Namhata, 1988; Namhata and Mukherjee, 1988, 1989, 1992; Namhata and Ghosh, 1993; Pal et al.,1989; Paul, 2004; Paul and Verma, 2004; Sinhababu and Banerjee, 2013). No ethnobotanical work including its quantitative analysis has been carried out from the Susunia hill of Bankura district. In this context, present study has been designed to document and conserve the traditional herbal knowledge of Santal tribe living around Susunia hill. Bankura is one of the seven districts of Burdwan Division in the Indian state of West Bengal. It lies between N 22 46' and N 23 38' and between E 86 36' and E 87°46'. The district has an area of 6881.24 sq km and total forest area of 1404 sq km.

<sup>\*</sup> Corresponding Author

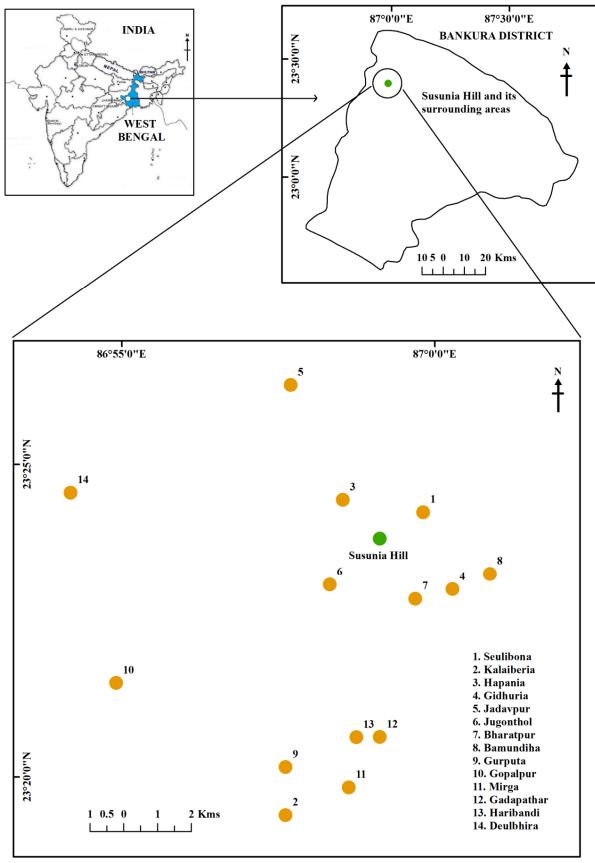



Fig. 1: map of Bankura district showing the study sites.

The Biharinath and Susunia are two remarkable hills of this district. Susunia hill (around N 23.39693° and E 86.98527°) is situated in the north-west of Bankura district, in the Chhotanagpur gneissic plateau of West Bengal and rises to 439.5 m above sea level (Figure-1).

It is a very small hill and runs for a length of about 3 km. Like other forest areas in the district, forest of the Susunia hill is also tropical dry deciduous type dominated by Sal tree (*Shorea robusta* Gaertn. f.). The hill is very rich in its plant resources including medicinal plants. The district Bankura is inhabited by many tribal communities such as Santals, Oraons, Koras, Bhumij, Mech, Mahali, Bedia and Mundas. Santals represent the largest indigenous tribal community in the district and the villages surrounding the Susunia hill are dominated by this tribe. The tribal villages selected for this study are located within 10 km radius around the hill.

### MATERIALS AND METHODS

#### Data collection

Ethnomedicinal data were collected between March 2011–February 2013 following the standard methods (Jain, 1987; Jain and Mudgal, 1999) from 14 tribal villages that were selected with the help of aged persons in the villages on basis of the

availability of traditional healers (Figure-1). The villages were visited in different seasons (summer, monsoon and winter) to avail most of the plant resources in their flowering condition. Twenty Santal key medicine men and five knowledgeable persons were selected as informants using purposive sampling method (Dolores and Tongco, 2007) (Table-1 and Figure-2). Most of the informants belong to an age between 50 and 80 years. The key informants selected from each sampled villages were the most knowledgeable ones as suggested by the tribal elders of respective villages. Before interview, Prior Informed Consent (PIC) was taken from each informant. The data have been collected by interviewing the informants through semi-structured and open-ended questionnaire. The Santal name of the plant, parts used, preparation and mode of administration of the crude drug, disease cured, etc. were recorded in detail. Interviews were conducted in the local languages i.e. Santali and Bengali. The plant specimens were collected and identified with the help of different Floras (Prain, 1903; Sanyal, 1994; Saxena and Brahmam, 1994; Varma, 1981). Correct and Valid scientific names for the recorded plant species have been used here following The International Plant Names Index (IPNI). Collected plant specimens have been preserved as herbarium specimen following conventional techniques (Jain and Rao, 1977) and kept in Visva-Bharati Herbarium, Department of Botany, Visva-Bharati, Santiniketan for future references.



Fig. 2: A. An interview with Rabindranath Hembrame (a key medicine man); B. Rasamoy Murmu showing his medicinal collection; C. Kartik Murmu giving medicine to a patient; D. Mohan Hansda performing some rituals as part of his ethnomedicinal practice and patients waiting for him.

# Quantitative ethnomedicinal data analysis

Here in this study, different quantitative tools like Consensus value for Plant Part [CPP](Monteiro et~al.,~2006), Informant Consensus Factor [F<sub>ic</sub>](Trotter and Logan, 1986), Fidelity Level [FL%](Friedman et~al.,~1986), Preference ranking exercise (Martin, 1995), Importance value [IV<sub>s</sub>] (Byg and Balsev, 2001) and Pearson Correlation Coefficient (PCC) were employed to analyze the collected data.

Consensus value for Plant Part (CPP) measures the degree of agreement among informants concerning the plant part used and is calculated as CPP =  $P_x \, / \, P_t$ , where  $P_x =$  number of times a given plant part was cited;  $P_t =$  total number of citation of all parts.

 $F_{\rm ic}$  has been determined to identify the most potential medicinal plant species used in the culture of Santal people of the study area. It is expressed by a formula:  $F_{\rm ic}=N_{ur}-N_t\ /\ N_{ur}-1$ , where  $N_{ur}$  is the number of use reports from informants for a particular disease category,  $N_t$  is the number of taxa that are used for that disease category.  $F_{\rm ic}$  value ranges between 0-1, where a high value indicates the greater informant consensus and a lower value signifies disagreement among the informants.

The Fidelity Level (FL%) is used to quantify the percentage of informants claiming the use of a certain plant for the same major purpose and is calculated as : FL=  $N_{\rm p}/$  N x 100, where  $N_{\rm p}=$  number of informants who cited the species for a particular disease ; N = total number of informants that cited the species to treat any given disease.

Preference ranking exercise (Martin, 1995) was conducted by six key medicine men on five medicinal plants used to treat boil in the study area. Boil was the disease against which highest number of medicinal plants was prescribed by the informants. The informants were given the plants and asked them to arrange plants based on their personal experience regarding efficacy of the plants. Medicinal plant that believed to be the most effective was given the highest value i.e. 5 and the one with least effectiveness was given a value of 1. Finally, rank was determined based on the total score of each species.

The Importance Value (IVs) measures the proportion of informants who regard a species as most important and is calculated as follows: IVs =  $n_{is}$  / n, where  $n_{is}$ = number of informants who consider the species  $_s$  most important; n= total number of informants.

Pearson product-moment correlation coefficient is a good measure to numerically quantify the nature of the linear relationship between two variables , giving a value between +1 and -1 inclusive, where 1 is total positive correlation, 0 is no correlation, and -1 is total negative correlation. The strength of the relationship is indicated by the correlation coefficient (r) but is actually measured by the coefficient of determination (r²). The significance of relationship is expressed in probability levels p (0.05). In our case, the two variables of interest are IVs and FL. Pearson product- moment correlation coefficient is done with the help of Statistics software [version 1.1.23-r7] (Wessa, 2014).

## RESULTS AND DISCUSSION

The result has been presented in tabular form. The species are arranged in alphabetical order of their scientific names with family name and voucher number, followed by the Santal name, plant parts used, mode of administration, diseases cured FL% and  $IV_s$  (Table- 2).

# Medicinal plants reported

Altogether 25 ethnomedicinal plants have been recorded from the district. These 25 recorded taxa spread over 22 species, 22 genera, 14 families of dicotyledons and 3 species, 3 genera, 3 families of monocotyledons. The family Fabaceae was represented by the highest number of species (4 species, 16%) followed by Asteraceae (3 species, 12%), Euphorbiaceae, Solanaceae and Vitaceae (2 species each, 8%). Remaining 12 families had single species representation (Figure- 3). Dominance of medicinal plant species from families Fabaceae and Asteraceae could be attributed to their wide distribution and abundance in the flora of this area.

Habitually the investigated taxa fall under 4 groups like Trees, Shrubs, Herbs and Climbers. The numbers of species in each group and their respective percentage have been defined as Trees- 8 (32%), Shrubs- 4 (16%), Herbs- 10 (40%) and Climbers-3 (12%) (Figure- 4). The most dominant life form of the species used by the tribal people in the district includes herbs (40%) which indicate that they are easily accessible and commonly grown around the tribal villages in the district.

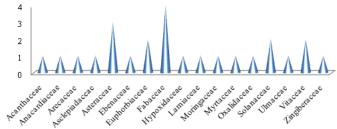



Fig. 3: Number of plant species in their respective family.

# Diseases treated

The recorded 25 plant species are used in formulation of 40 types of ethnomedicinal preparations that cure 27 types of diseases. The diseases which occur most frequently in the area are boil, scorpion sting, stomachache, elephantiasis, intestinal worm, etc. These 27 types of diseases were grouped into 11 major categories like dermatological disorder, muscular-skeletal system disorder, digestive system disorder, infections, genitio-urinary system disorder, etc. It has been observed that against boil, a medicinal condition under—the category of dermatological disorder, a large number of medicinal plants (6species) were prescribed. For scorpion sting, the number of prescribed species is 4, followed by 3 species in case of stomachache, 2 species in case of external cut, elephantiasis, intestinal worm, jaundice, etc.

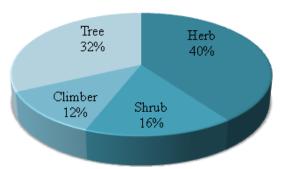



Fig. 4: Growth form of the investigated taxa.

# Plant parts used

The leaf part of the plants (CPP value 0.33) was used by the tribal people very frequently in formulation of the remedies as compared to other plant parts. Flower, fruit and seed secured the CPP value of 0.29 followed by root and rhizome (0.24), stem bark (0.07), latex and gum (0.05) and whole plant (0.02) (Figure- 5). Medicine men here in the study area prefer leaves most in preparation of their remedies because this part of plant is easily accessible than other parts, more efficacious and it is known to us that leaves are the sites for synthesis of bioactive secondary metabolites. Collection of plant parts specially leaves by the tribal people would support the sustainable method of harvest because in most of the cases at least a number of leaves are left unplucked which allow the parent plant to survive normally. Harvesting root, rhizome and seed poses more threat to survival of plants than collecting other parts such as leaves, bark and flower.

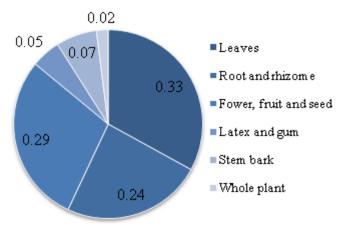



Fig. 5: CPP values of plant parts used in herbal preparations.

#### Use of drugs in various forms

It has been observed that Santal medicine men in the study area follow various ways of remedy preparation which depend on type of disease treated. The major modes of remedy preparations were paste (50%), ointment (12.5%), powder (7.5%), cooking, juice, pill (5%), burning ash, decoction, gum, latex, mouthwash and plaster (2.5%)(Figure-6). Along with herbal ingredients, different additives like coconut oil, molasses, black salt and termite mound's soil were often used in preparation of remedies. Plant ingredients were collected by the medicine men

from wild habitat in the study area and other ingredients like coconut oil, molasses, black salt were procured from the commercial sources. The soil of termite's mound was collected from its mounds which are very common in forest floor of the district.

The majority (72.5%) of the remedies were prepared from fresh materials only. Some remedies were prepared from dried materials (15%) exclusively and few were prepared from dried or fresh materials depending upon their availability in the area (12.5%). The fact that both fresh and dried forms are used in the preparation of remedies create a better opportunity for the Santal people here to have access to the materials used in medicinal formulation across different seasons of the year. It is the opinion of the informants regarding their use of fresh ingredients in remedy preparation that in fresh form the efficacy potential of the ingredients remain intact, which they thought, could be lost on drying.

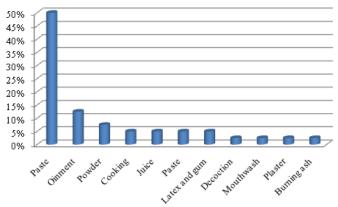



Fig. 6: Method of preparation of Santal medicine.

#### Routes of administration and doses

More than half (57.5%) of the remedies were applied externally on affected part of the skin directly, and 42.5% of the preparations were applied internally in the form of oral application. Results show that there was no agreement in measurement or unit used among informants. Informants generally used measuring units such as teaspoon, cup, fingers, etc. but still differed in the doses they administered.

## Statistical analysis

Finally, the data were analyzed by employing the quantitative tools like  $F_{ic}$ , FL%, preference ranking exercise, IVs and Pearson product-moment correlation coefficient to get more objectivity in this study. Our study reveals that there is a high level of consensus among the informants regarding disease cure and medicinal plant use. The  $F_{ic}$  value for different disease categories ranges from 0.909 to 1.00 which indicates greater agreement among the informants regarding phyto-therapeutic uses of medicinal plants (Table- 3). Circulatory system disorder, nervous system disorder and birth/puerperium disorder secured the highest

Fic value (1) which indicates the remedies against these disease categories are very efficacious and those remedies are actively practising among the Santal healers in the study area. The species used in remedies for the disease categories with high F<sub>ic</sub> values are considered as high consensus species which have established as very prospective one in many natural product studies. It has been established by many workers that high consensus species are the prospective candidates for investigation of their phytochemistry and pharmacology (Heinrich, 2000; Trotter and Logan, 1986). One earlier study found that the good consensus of Kenyah healers in Borneo on antimalarial plants was indicative of high activity in laboratory antiplasmodium assays (Leaman et al., 1995). Like wise the plant species which have been identified as highest scorer in respect of their Fic value can be considered useful in development of evidence-based phytomedicine for the tribal people of the study area.

Fidelity Level (FL%) value of the recorded 25 plant species ranges from 28% - 100% (Table- 2). Highest fidelity level value (100%) has been recorded for ten plants such as Ampelocissus latifolia (Roxb.) Planch. and Lannea coromandelica (Houtt.) Merr. against elephantiasis, Cajanus cajan (L.) Millsp. and Diospyros melanoxylon Roxb. against jaundice, Calotropis gigantea (L.) W.T. Aiton against scorpion sting, precatorius L. against sprain, Blumea lacera (Roxb.) DC and Borassus flabellifer L. against external cut, Centratherum anthelminticum (L.) Gamble for good digestion, Cissus adnata Roxb. against bone fracture, etc. The highest FL% value could be considered as an indicator for the high healing potential of those plants used against the corresponding diseases. Plants with highest fidelity level value could also be targeted for further phytochemical investigation to identify the bioactive compounds that are responsible for their high healing potential. These ten plant

species are till commonly growing in natural habitats in the study area with no adverse effect of collection pressure upon them, but in future there may be a chance of declining the population of them due to their high use pressure in long term. Preference ranking exercise conducted on six medicinal plants which are used to treat boil reveals that Curcuma longa L. is the most preferred medicinal plant followed by Andrographis paniculata Nees, Ricinus communis L. (Table- 4). The fact that Curcuma longa L. is the most frequently used plant for treatment of boil in the area which highlights its highest efficacy potential among the six plant species cited by the informants. Here IV<sub>s</sub> of the plants ranges from 0.2 -1. The highest Importance Value (IV<sub>s</sub>) calculated here is 1 which has been recorded for the plants like Borassus flabellifer L. against external cut, Cajanus cajan (L.) Millsp. against jaundice, Centratherum anthelminticum (L.) Gamble for digestion, Cissus adnata Roxb. against bone fracture, Moringa oleifera Lam. against pox and high blood pressure, Solanum surattense Burm.f. against toothache (Table- 2). The highest score for Importance Value of these plants also highlights that these plants are therapeutically very important and tribal healers in the area rely mostly upon them for effective treatment. Here the Pearson correlation coefficient has been determined between IVs and FL% and its value is 0.679 (Table- 5) which showed a moderate positive correlation between the proportion of informants who regard a species as most important and percentage of informants claiming the use of a certain plant for the same major purpose. The IVs and FL% are moderately correlated which means that their use patterns across the species moderately match. The degree to which IVs and FL% varies across the species is measured numerically by r<sup>2</sup> which states that around 46 percent variation in IVs can be explained by that of FL. These findings have further supported by a scattered plot which reflects a moderate positive correlation (Figure-7).

Table. 1: Name of the informants, their age, village and category.

| Sl. No | Name                  | Age (Years) | Village              | Category of informant |
|--------|-----------------------|-------------|----------------------|-----------------------|
| 1      | Rabindranath Hembrame | 61          | Seulibona            | Key medicine man      |
| 2      | Karamchand Hembrame   | 48          | Seulibona            | Knowledgeable person  |
| 3      | Baidyanath Hansda     | 45          | Seulibona            | Knowledgeable person  |
| 4      | Aditya Hansda         | 38          | Kalaiberia           | Key medicine man      |
| 5      | Shyamapada Besra      | 50          | Hapania (Pahar para) | Key medicine man      |
| 6      | Abinash Tudu          | 40          | Hapania (Pahar para) | Knowledgeable person  |
| 7      | Bijoy Besra           | 40          | Hapania (Pahar para) | Knowledgeable person  |
| 8      | Kankaram Tudu         | 76          | Hapania (Pahar para) | Key medicine man      |
| 9      | Ramchandra Hansda     | 80          | Hapania (Pahar para) | Key medicine man      |
| 10     | Panchu Hembrame       | 75          | Hapania (Pahar para) | Key medicine man      |
| 11     | Rasamoy Murmu         | 67          | Gidhuria             | Key medicine man      |
| 12     | Mohan Hansda          | 65          | Jadavpur             | Key medicine man      |
| 13     | Shankar Murmu         | 50          | Jadavpur             | Key medicine man      |
| 14     | Rampada Murmu         | 51          | Jadavpur             | Key medicine man      |
| 15     | Mangal Hembrame       | 53          | Jadavpur             | Knowledgeable person  |
| 16     | Kartik Murmu          | 57          | Jugonthol            | Key medicine man      |
| 17     | Dharama Tudu          | 61          | Bharatpur            | Key medicine man      |
| 18     | Dharmadas Mandi       | 80          | Bamundiha            | Key medicine man      |
| 19     | Ramdas Soren          | 58          | Bamundiha            | Key medicine man      |
| 20     | Jagan Murmu           | 66          | Gurputa              | Key medicine man      |
| 21     | Joydeb Murmu          | 39          | Gopalpur             | Key medicine man      |
| 22     | Biswanath Hembrame    | 56          | Mirga                | Key medicine man      |
| 23     | Dasarath Murmu        | 79          | Gadapathar           | Key medicine man      |
| 24     | Bilome Murmu          | 50          | Haribandi            | Key medicine man      |
| 25     | Ramdas Soren          | 55          | Deulbhira            | Key medicine man      |

 Table- 2: Medicinal plants used by the Santal tribal people of surrounding villages of the Susunia hill

| Formulatio<br>n no. | Santal name Mode of administration                                                                                                                |               | Diseases             | FL%                                                                                                                                                   | $IV_s$                                           |     |      |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----|------|
| 1                   | Abrus precatorius L. (White variety) Fabaceae/SK10  Leaf Leaves are made into paste and applied on affected area topically once a day for 4 days. |               | Sprain               | 100                                                                                                                                                   | 0.32                                             |     |      |
| 2                   | Ampelocissus latifolia (Roxb.)<br>Planch.<br>/Vitaceae/SK50                                                                                       | Icewar        | Root                 | Root is made into paste, warmed and applied topically on the affected area twice a day for 30 days.                                                   | Elephantiasis                                    | 100 | 0.56 |
| 3                   | Andrographis paniculata Nees<br>/Acanthaceae/SK15                                                                                                 | Kalmegh       | Leaf                 | Leaves are made into paste, pill is<br>made from it and one pill is taken<br>orally once a day for 7 days.                                            | Boil                                             | 79  | 0.6  |
| 4                   | Andrographis paniculata Nees<br>/Acanthaceae/SK15                                                                                                 | Kalmegh       | Leaf                 | Leaves are made into paste, pill is<br>made from it and one pill is taken<br>orally once a day                                                        | Diabetes                                         | 37  | 0.28 |
| 5                   | Blumea lacera (Roxb.) DC.<br>/Asteraceae/SK40                                                                                                     | Randoi        | Leaf                 | Leaf paste is applied topically on cut area to stop bleeding                                                                                          | External cut                                     | 100 | 0.6  |
| 6                   | Borassus flabellifer L.<br>/Arecaceae/SK43                                                                                                        | Taledare      | Tomentu<br>m of leaf | Tomentum of leaf is applied on the cut area to stop bleeding                                                                                          | External cut                                     | 100 | 1    |
| 7                   | Borassus flabellifer L.<br>/Arecaceae/SK43                                                                                                        | Taledare      | Root                 | Secretion of root is collected and one cupfull of juice is taken orally once a day for 15 days                                                        | Seminal weakness                                 | 32  | 0.32 |
| 8                   | Butea monosperma (Lam.) Taub. /Fabaceae/SK54                                                                                                      | Murut         | Flower               | Flowers (3) are made into paste and taken orally once a day for 7 days                                                                                | White discharge                                  | 64  | 0.56 |
| 9                   | Butea monosperma (Lam.) Taub.<br>/ Fabaceae /SK54                                                                                                 | Murut         | Seed                 | Seeds are ground into powder and<br>one teaspoonfull of powder is mixed<br>with half cupfull of water and taken<br>orally once a day in empty stomach | Intestinal worm                                  | 82  | 0.72 |
| 10                  | Cajanus cajan (L.) Millsp.<br>/ Fabaceae/SK59                                                                                                     | Baredare      | Leaf                 | Leaves are made into paste and taken orally                                                                                                           | Jaundice                                         | 100 | 1    |
| 11                  | Calotropis gigantea (L.) W.T.Aiton<br>/Asclepiadaceae/SK 65                                                                                       | Akana         | Latex                | Milky latex is directly applied on affected area                                                                                                      | Scorpion sting                                   | 100 | 0.6  |
| 12                  | Centratherum anthelminticum (L.)<br>Gamble<br>/Asteraceae/SK22                                                                                    | Shaonraj      | Seed                 | Seed powder is mixed with salt and taken orally after meal                                                                                            | Digestive                                        | 100 | 1    |
| 13                  | Cissus adnata Roxb.<br>/ Vitaceae/SK35                                                                                                            | Bodlar        | Root                 | Root paste together with termite mound's soil is bandaged for 7 days                                                                                  | Bone facture                                     | 100 | 1    |
| 14                  | Curculigo orchioides Gaertn.<br>/Hypoxidaceae/SK31                                                                                                | Turom         | Root                 | Root (100gm) made into paste and taken orally twice a day for 15 days                                                                                 | White discharge of<br>women, urine with<br>semen | 100 | 0.52 |
| 15                  | Curcuma longa L.<br>/Zingiberaceae/SK27                                                                                                           | Shasang dare  | Rhizome              | Paste of rhizome is warmed and applied on abscess for 2-3 days                                                                                        | Boil                                             | 94  | 0.6  |
| 16                  | Curcuma longa L.<br>/Zingiberaceae/SK27                                                                                                           | Shasang dare  | Rhizome              | Paste of rhizome is applied on affected area                                                                                                          | Sprain                                           | 50  | 0.32 |
| 17                  | Datura metel L.<br>/Solanaceae/SK14                                                                                                               | Dhutra        | Leaf                 | Leaves are made into paste, warmed and applied on abscess                                                                                             | Boil                                             | 54  | 0.28 |
| 18                  | Datura metel L.<br>/Solanaceae /SK9                                                                                                               | Dhutra        | Root                 | Root (25gm) is made into paste and taken orally once a day                                                                                            | Knee arthritis                                   | 62  | 0.32 |
| 19                  | Diospyros melanoxylon Roxb.<br>/Ebenaceae /SK45                                                                                                   | Tereldare     | Gum                  | Gum is mixed in water and taken orally once a day for 7 days                                                                                          | Jaundice                                         | 100 | 0.28 |
| 20                  | Elephantopus scaber L.<br>/Asteraceae /SK60                                                                                                       | Mejurjhuti    | Whole plant          | Half-burnt plant is made into powder,<br>mixed with coconut oil and applied<br>on the boil                                                            | Boil                                             | 82  | 0.36 |
| 21                  | Elephantopus scaber L.<br>/Asteraceae/SK60                                                                                                        | Mejurjhuti    | Root                 | Root paste is applied on affected area                                                                                                                | Scorpion sting                                   | 45  | 0.2  |
| 22                  | Holoptelea integrifolia (Roxb.)<br>Planch.<br>/Ulmaceae/SK18                                                                                      | Challa        | Stem<br>bark         | Stem bark is made into paste and applied on affected area                                                                                             | Ring worm                                        | 100 | 0.6  |
| 23                  | Lannea coromandelica (Houtt.)<br>Merr.<br>/Anacardiaceae /SK19                                                                                    | Dokadare      | Stem<br>bark         | Stem bark is made into paste and mixed with molasses, warmed and pill is prepared from it. One pill is taken orally twice a day for 3 days.           | Elephantiasis                                    | 100 | 0.56 |
| 24                  | Leucas mollissima Wall.<br>/Lamiaceae/SK29                                                                                                        | Dhandhurupara | Leaf                 | Leaves are made into paste and applied on forehead                                                                                                    | Headache                                         | 50  | 0.28 |
| 25                  | Leucas mollissima Wall.<br>/Lamiaceae/SK29                                                                                                        | Dhandhurupara | Leaf                 | Leaves are cooked and taken orally                                                                                                                    | worm                                             | 71  | 0.4  |
| 26                  | Millettia pinnata<br>(L.) Panigrahi<br>/Fabaceae/SK 37                                                                                            | Karajdare     | Seed                 | Seed oil is applied on affected area                                                                                                                  | Boil                                             | 76  | 0.52 |

| 27 | Millettia pinnata<br>(L.) Panigrahi<br>/Fabaceae/SK37 | Karajdare           | Seed                     | Seed oil is warmed and massaged on the heel                                                                                     | Heel crack                         | 35  | 0.24 |
|----|-------------------------------------------------------|---------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----|------|
| 28 | Millettia pinnata<br>(L.) Panigrahi<br>/Fabaceae/SK37 | Karajdare           | Seed                     | Seed oil is applied on affected area                                                                                            | Itching                            | 41  | 0.52 |
| 29 | Moringa oleifera Lam.<br>/Moringaceae/SK66            | Mungdodar<br>e      | Leaves,<br>flower, fruit | Leaves, flowers and fruits are cooked and taken orally                                                                          | Pox, High blood pressure           | 100 | 1    |
| 30 | Oxalis corniculata L.<br>/Oxalidaceae/SK51            | Tandi<br>chatam ara | Leaf                     | Leaves are made into paste and taken<br>two teaspoonfull for 2-3 days(for<br>stomachache) or 10-12 days(for gastric<br>problem) | Gastric<br>problem,Stomac<br>hache | 100 | 0.36 |
| 31 | Ricinus communis L.<br>/Euphorbiaceae/SK39            | Eradom              | Leaf                     | Leaves are made into paste and applied on breast                                                                                | Breast pain after childbirth       | 37  | 0.28 |
| 32 | Ricinus communis L.<br>/Euphorbiaceae/SK39            | Eradom              | Root                     | Root paste is directly applied on affected area                                                                                 | Scorpion sting                     | 47  | 0.36 |
| 33 | Ricinus communis L.<br>/Euphorbiaceae/SK39            | Eradom              | Seed                     | Seed oil is applied on belly                                                                                                    | Stomachache                        | 37  | 0.28 |
| 34 | Ricinus communis L.<br>/Euphorbiaceae/SK39            | Eradom              | Leaf                     | Leaf paste is warmed and massaged on breast                                                                                     | Induce<br>lactation                | 37  | 0.28 |
| 35 | Ricinus communis L. /Euphorbiaceae/SK39               | Eradom              | Leaf                     | Leaf paste is applied on boil                                                                                                   | Boil                               | 42  | 0.32 |
| 36 | Solanum surattense Burm.f.<br>/Solanaceae/SK17        | Rangoni             | Seed                     | Seeds(3-4) are boiled in water and taken orally twice a day                                                                     | Malaria                            | 28  | 0.28 |
| 37 | Solanum surattense Burm.f. /Solanaceae/SK17           | Rangoni             | Seed                     | Seeds(3-4) are boiled in water and gargled once a day for 7 days                                                                | Toothache                          | 100 | 1    |
| 38 | Syzygium cumini (L.) Skeels<br>/Myrtaceae/SK49        | Kodedare            | Stembark                 | Juice is made from bark and taken orally one teaspoonful for 25 days                                                            | Stomachache,<br>gastric problem    | 100 | 0.44 |
| 39 | Tragia involucrata L.<br>/Euphorbiaceae/SK61          | Sengal sing         | Seed                     | Seeds are made into paste and applied topically on head once a day for 3-4 days                                                 | Hair fall                          | 88  | 0.56 |
| 40 | Tragia involucrata L.<br>/Euphorbiaceae/SK61          | Sengal sing         | Root                     | Root paste is applied on affected area                                                                                          | Scorpion sting                     | 31  | 0.2  |
| 40 | /Euphorbiaceae/SK61                                   | Sengal sing         | Koot                     | Root paste is applied on affected area                                                                                          | Scorpion sting                     | 31  | 0.   |

**Table. 3:** Informant Consensus Factor  $(F_{ic})$  for each disease category

| Disease category                  | No. of Taxa (Nt) | No. of use-reports (N <sub>ur</sub> ) | $\mathbf{F_{ic}}$ |
|-----------------------------------|------------------|---------------------------------------|-------------------|
| Circulatory System Disorder       | 1                | 25                                    | 1                 |
| Nervous System Disorder           | 1                | 7                                     | 1                 |
| Injuries                          | 2                | 40                                    | 0.9743            |
| Metabolic System Disorder         | 2                | 39                                    | 0.9736            |
| Birth/Puerperium Disorder         | 1                | 14                                    | 1                 |
| Digestive System Disorder         | 5                | 97                                    | 0.9583            |
| Genito-urinary System Disorder    | 3                | 48                                    | 0.9574            |
| Infections                        | 6                | 88                                    | 0.9425            |
| Muscular-Skeletal System Disorder | 4                | 49                                    | 0.9375            |
| Dermatological Disorder           | 8                | 100                                   | 0.9292            |
| Poisoning                         | 4                | 34                                    | 0.9090            |

Table. 4: Preference ranking of six medicinal plants reported for treating boil

| Medicinal plants                 |   | Informants* |   |   |   |   |               | D l-            |
|----------------------------------|---|-------------|---|---|---|---|---------------|-----------------|
| Medicinal plants                 | A | В           | С | D | E | F | — Total score | Rank            |
| Andrographis paniculata Nees     | 3 | 3           | 4 | 3 | 2 | 5 | 20            | 2 <sup>nd</sup> |
| Curcuma longa L.                 | 5 | 5           | 4 | 4 | 2 | 4 | 24            | 1 <sup>st</sup> |
| Datura metel L.                  | 5 | 3           | 1 | 1 | 1 | 5 | 16            | 5 <sup>th</sup> |
| Elephantopus scaber L.           | 2 | 1           | 3 | 5 | 1 | 3 | 15            | 6 <sup>th</sup> |
| Millettia pinnata (L.) Panigrahi | 3 | 1           | 5 | 1 | 2 | 5 | 17            | $4^{th}$        |
| Ricinus communis L.              | 3 | 2           | 3 | 3 | 5 | 3 | 19            | $3^{\rm rd}$    |

<sup>\*</sup>Informants cited as A to F; where, A = Kankaram Tudu; B = Syamapada Besra; C = Panchu Hembrame; D = Mohan Hansda; E = Kartik Murmu; F = Rabindranath Hembrame

Table. 5: Summary statistics for Pearson Product-Moment Correlation.

| Statistics                      | $\mathbf{IV_s}$ | FL     |  |  |
|---------------------------------|-----------------|--------|--|--|
| Mean                            | 0.498           | 72.525 |  |  |
| Standard Deviation              | 0.249           | 27.247 |  |  |
| Correlation (r)                 | 0.679           |        |  |  |
| Determination (r <sup>2</sup> ) | 0.461           |        |  |  |
| T-Test                          | 5.706           |        |  |  |
| p-value (2 sided)               | 0.00000144      |        |  |  |
| p-value (1 sided)               | 0.00000072      |        |  |  |
| Degrees of Freedom              | 38              |        |  |  |
| Number of Observations          | 40              | 40     |  |  |

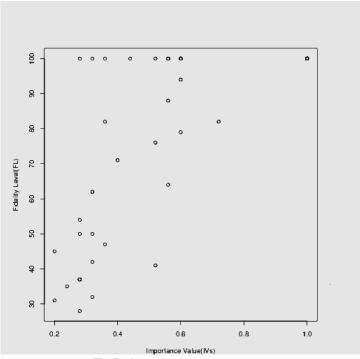



Fig. 7: Correlation between IVs and FL.

# **CONCLUSION**

The study will help in preparation of ethnomedicinal database. The use of quantitative tools is very new approach here in analysis of Santal medicine from West Bengal. The high consensus obtained from the healers underlines their well-defined herbal tradition and could guide in selection of medicinal plants as potent candidates for bioprospecting and natural product studies. The traditional knowledge of herbal medicine practiced among the Santal community of the villages surrounding the Susunia hill of Bankura district should be conserved through its documentation before it is lost from the respective Santal societies forever. It will also protect the IPR of the Santal community of the study area. The herbal claim of this study has to be exploited further for developing new cost effective herbal drug.

# **ACKNOWLEDGEMENT**

The authors are very much grateful to all the Santal informants who shared their knowledge regarding use of medicinal plants with us. Without their contribution, this study would have not been possible. We are also thankful to the Head, Department of Botany, Visva-Bharati, Santiniketan for necessary laboratory facilities.

# REFERENCES

Acharya J, Mukherjee A. Herbal folk remedies against skin ailments as documented from Purulia and Bankura districts of West Bengal. Indian J App Pure Bio, 2010a; 25(2): 413-416.

Acharya J, Mukherjee A. Herbal therapy for urinary ailments as documented from Bankura district (West Bengal). Indian J Sci Res, 2010b; 1(1):67-69.

Banerjee A, Mukherjee A, Sinhababu A. Ethnobotanical documentation of some wild edible plants in Bankura District, West Bengal, India. J Ethno Trad Med Photon, 2013; 585-590.

Basu R. Ethnomedicinal information of yellow flowered palash and silk coton in Bankura district of West Bengal. J Econ Taxon Bot, 2003; 27(3): 580-581.

Byg A, Balsev H. Diversity and use of palms in Zahamena, eastern Madagascar. Biodivers Conserv, 2001;10: 951- 970.

Choudhuri RHN, Soren AM, Mollah A. Some less known uses of plants from the tribal areas of Bankura district, West Bengal. Indian Mus Bull, 1982; 14: 71-73.

Dolores Ma, Tongco C. Purposive sampling as a tool for informant selection. Ethn Res Appl, 2007; 5: 147-158.

Friedman J, Yaniv Z, Dafni, Palewith D. A preliminiary classification of healing potential of medicinal plants, based on a rational analysis of an ethnopharmacological field survey among Bedouins in the Negev desert, Israel. J Ethnopharmacol, 1986; 16: 275-287.

Ghosh A. Herbal veterinary from the tribal areas of Bankura District, West Bengal. J. Econ. Taxon. Bot, 1999; 23(2): 557-560.

Ghosh A. Ethnoveterinary medicines for the tribal areas of Bankura and Medinipur districts, West Bengal. Indian J Trad Know, 2002; 1: 93-95.

Ghosh A. Herbal folk medicines of Bankura and Medinipur districts, West Bengal. Indian J Trad Knowl, 2003a; 2: 393-396.

Ghosh A. Herbal veterinary medicine from the tribal areas of Mednapore and Bankura district, West Bengal. J Econ Taxon Bot, 2003b; 27(3): 573-575.

Ghosh A. Medicinal plants used for treatment of diabetes by the tribals of Bankura, Purulia and Medinipur of West Bengal. J. Econ. Taxon. Bot, 2006; 30(Suppl.): 233-238.

Ghosh A. Ethnomedicinal plants used in West Rarh regions of West Bengal Nat Prod Rad, 2008; 7 (5): 461-465.

Ghosh A, Maity S, Maity M. Ethnomedicine in Bankura District, West Bengal. J Econ Taxon Bot Addl ser, 1996; 12: 318-320.

Heinrich M. Ethnobotany and its role in drug development. Phytother Res, 2000; 14: 479–488.

Jain SK.1987. A Mannual of Ethnobotany. Jodhpur, India: Sci Publishers

Jain SK, Mudgal V. 1999. A hand book of Ethnobotany. Dehra Dun, India: Bishen Singh Mahendra Pal Singh.

Jain SK, Rao RR. 1977. A Handbook of Field and Herbarium Methods. New Delhi, India: Today and Tomorrows Publ.

Kar B. Report on ethnomedicinal uses of Gloriosa superb in Bankura district of West Bengal, India. Geobios New Reports, 1999; 8(2): 135-136.

Leaman DJ, Arnason JT, Yusuf R, Sangat-Roemantyo H, Soedjito H, angerhofer CK, Pezzuto JM. Malaria remedies of the Kenyah of the Apo Kayan, West Kalimantan, Indonesian Borneo: A quantitative asseseement of local consensus as an indicator of biological efficacy. J Ethnopharmacol, 1995; 49(1): 1-16.

Mallick H, Mallick SK. Medicinal plants used by the tribals of Natungram village district Bankura, West Bengal. Int J B App Sci, 2012; 1(2): 131-133.

Mallick SK, Banerjee P, Saha A. Medicinal plants used by the tribals of Ratanpur village of Bankura, West Bengal. Int J Life Sci, 2012; 1(2): 82-86.

Martin GJ.1995. Ethnobotany: Principles and applications. New York: John Wiley and Sons Ltd.

Mondal T, Biswas S.Ethnoveterinary uses of some medicinal plants of Bankura district, West Bengal. Life Sci leaflets, 2012; 5: 47-49.

Monterio JM, Albuquerque UP, Lins-Neto EMF, Araújo EL, Amorim ELC. Use patterns and knowledge of medicinal species among two rural communities in Brazil's semi-arid northeastern region. J Ethnopharmacol, 2006; 105: 173-186.

Mukherjee A, Namhata D. Herbal veterinary medicine as practiced by the tribals of Bankura District. J Beng Nat Hist Soc (NS), 1988; 7(1): 69-71.

Namhata D, Ghosh A. Herbal folk medicine of Bankura District, West Bengal. Geobios. 1993; 12: 94-96.

Namhata D, Mukherjee A. Ethnomedicine in Bankura District, West Bengal. Indian J. App Pure Bio, 1988; 3(2): 53-55.

Namhata D, Mukherjee A. Some common practices of herbal medicines in Bankura District, West Bengal. Indian J Forestry, 1989; 12 (4): 318-321.

Namhata D, Mukherjee A. Some folklore medicines of Bankura District, West Bengal. J Econ Taxon Bot Add Ser, 1992; 10: 265-266.

Paul CR. Some low cost food preservation and processing techniques by the tribals of Bankura District, West Bengal. J Econ Taxon Bot. 2004; 28(3): 597-598.

Paul CR, Verma NK. Botany and ethnobotany of *Diospyros melanoxylon* Roxb. (Ebenaceae). J Econ Taxon Bot, 2004; 28(3): 599-601.

Pal DC, Soren AM, Sen R. Less Known uses of twenty plants from the tribals areas of Bankura district, West Bengal. J Econ Taxon Bot, 1989; 13(3): 695-698.

Prain D. 1903. Bengal plants, Vol 1-2. Calcutta.

Sanyal MN. 1994. Flora of Bankura District. Dehra Dun, India: Bishen Singh Mahendra Pal Singh.

Saxena HO, Brahmam M. 1994. The flora of Orissa, Vol 1-4. Bhubaneswar, India: Regional Research Laboratory and Orissa Forest Development Corporation Ltd.

Sinhababu A, Banerjee A. Documentation of some ethnomedicinal plants of family Lamiaceae in Bankura District, West Bengal, india. Int Res J Bio Sci, 2013; 2(6): 63-65.

Trotter RT, Logan MH. 1986. Informant consensus: a new approach for identifying potentially effective medicinal plants. In: Etkin NL, ed. Plants in indigenous medicine and diet, behavoiural approaches. Bredfort Hills, New York: Redgrave Publishing Company 91-112.

Varma SK, 1981. Flora of Bhagalpur (Dicotyledons). New Delhi.

Wessa P 2014. Pearson Correlation (v1.0.9) in free statistics software (v1.1.23r7), Office for Research Development and Education. Avaiable at http://www.wessa.net/ rwasp\_correlation.wasp/

### How to cite this article:

Chowdhury Habibur Rahaman, Suman Karmakar. Ethnomedicine of Santal tribe living around Susunia hill of Bankura district, West Bengal, India: The quantitative approach. J App Pharm Sci, 2015; 5 (02): 127-136.