Journal of Applied Pharmaceutical Science Vol. 4 (07), pp. 069-075, July, 2014 Available online at http://www.japsonline.com DOI: 10.7324/JAPS.2014.40712 ISSN 2231-3354 CC BY-NC-SA

In vitro antioxidant and antibacterial activities of two fresh water Cyanobacterial species, Oscillatoria agardhii and Anabaena sphaerica

Azza M. Abd El-Aty^{*1}, Amal A. Mohamed², Farag A. Samhan¹

ABSTRACT

¹Water Pollution Research Department, National Research Centre, Cairo, Egypt, ²Plant Biochemistry Dept., National Research Centre, Cairo, Egypt.

ARTICLE INFO

Article history: Received on: 28/01/2014 Revised on: 21/02/2014 Accepted on: 19/03/2014 Available online: 28/07/2014

Key words: Antibacterial activity; cyanobacteria; DPPH radical scavenging assay; phenolic compounds; volatile organic compounds

INTRODUCTION

Algae have a significant attraction as natural source of bioactive molecules with a broad range of biological activities, including antimicrobial, antiviral, anticancer, antioxidant, and antiinflammatory effects (Tuney et al., 2006 and Patra et al., 2008). Algae contain minerals, polysaccharides, amino acid derivatives, carotenoids, and phenolic compounds. Some of these compounds can display antioxidant properties at very low concentrations (Yuan and Walsh, 2006). Microalgae have the potential to produce natural bioactive compounds (in culture), which are difficult to be produced by chemical synthesis (Goud et al., 2007). Cyanobacteria are morphologically, physiologically, and metabolically very diverse group, which makes them as a promising group of organisms for research on drugs discovery. Additionally, the bioactive products are active against bacteria, fungi, and virus (Abed et al., 2011 and, Rama-Murthy et al., 2012). Even though cyanobacteria are beneficial, they are often regarded as an environmental nuisance, which are hazardous to both humans and aquatic organisms. Cyanobacterial pigments are not only used as

Cyanobacteria are potential sources of biologically active compounds with antiviral, antibacterial, antifungal, and anticancer activities. In the present investigation, the effect of different solvents, including methanol, acetone, and water on the total phenolic, flavonoid, antioxidant and antibacterial activities of *Oscillatoria agardhii* and *Anabaena sphaerica* extracts were evaluated. The results showed that solvents with different polarities have various effects on phenolic content and antioxidant activity. Among the tested solvents, methanolic extract of *Oscillatoria agardhii* showed the highest antioxidant activity as well as the highest phenolic content. Organic extracts (with methanol or acetone) of the tested species actively inhibited the growth of bacteria compared to aqueous extracts. The highest antibacterial activity was detected by acetone extract of *Oscillatoria agardhii* against *Salmonella senftenberg*. By GC-MS analysis some important heterocyclic compound were identified in both *Oscillatoria agardhii* and *Anabaena sphaerica* crude extracts. This appeared to be responsible for such excellent antioxidant and antibacterial activity together with other unidentified compounds. Further exploration of antibacterial potential of cyanobacteria can open new horizons.

nutritional ingredients and natural dyes for food and cosmetics, but also used as pharmaceuticals and fluorescent markers in biomedical research (Venugopal *et al.*, 2005). Antioxidants play an important role in inhibiting and scavenging radicals, thus providing protection to humans against infections and degenerative diseases.

The two most commonly used synthetic antioxidants; butylated hydroxyl anisole (BHA) and butylated hydroxyl toluene (BHT) are restricted because of their toxicity and DNA damage induction. Therefore, natural antioxidants from plant and algal extracts have attracted much attention because of safety. Recent researches have been interested in finding novel antioxidants to combat and / or prevent reactive oxygen species (ROS) mediated diseases. Algae generally have higher antioxidant activity due to higher contents of non-enzymatic antioxidant components, including ascorbic acid, reduced glutathione, phenols, and flavonoids (Wu et al., 2010). Natural antioxidant compounds exhibit their antioxidant activity through various mechanisms; including chain breaking (by donation of hydrogen atoms or electrons that convert free radicals into more stable species) and decomposing lipid peroxides into stable final products (Hussain et al., 2008).

* Corresponding Author

Email: <u>azzamy@hotmail.com</u>, Phone: +201222338835

© 2014 Azza M. Abd El-Aty et al. This is an open access article distributed under the terms of the Creative Commons Attribution License -NonCommercial-ShareAlikeUnported License (http://creativecommons.org/licenses/by-nc-sa/3.0/).

The ability of algae to produce antimicrobial substances could be used not only as a defense agent (against pathogens) but also as pharmaceutical bioactive natural compounds. Though much is known about the chemistry and the antimicrobial action of several phytochemicals, very few reports are available on the possible mechanism of action. For phenols and phenolic compounds, an injury of membrane functions has been proposed as a mechanism of action (Sashidhar, 2002). The present work aims to evaluate the antioxidant and antibacterial activities of two algal species (*Oscillatoria agardhii and Anabaena sphaerica*) along with studying total phenolic and flavonoid content of the extracts using different solvents (methanol, acetone, and water) as well as identifying their chemical profiles using GC/MS.

MATERIALS AND METHODS

Chemicals

Folin-ciocalteu reagent, gallic acid and methanol were purchased from Merck Company (Darmstadt, Germany). DPPH (2,2-diphenyl-1-picrylhydrazyl) and quercetin (QU) were obtained from Sigma Chemical Co. (St. Louis, MO, USA). All other chemicals and reagents such as aluminum chloride and sodium hydroxide were obtained from BDH, Dorset, UK. The HPLCgrade organic solvents were obtained from Merck. All other chemicals were of analytical-grade purity and available from the National Research Centre, Dokki, Egypt.

Collection and Growth Condition of Algal Strains

Two algal species were selected to evaluate their antioxidant and antibacterial activity against some species of bacteria. These algae belong to cyanobacteria, *Anabaena sphaerica* (N₂-fixing blue algae) and *Oscillatoria agardhii*. The tested algal species were isolated from phytoplankton community structure of River Nile at Ismailia canal, Egypt. BG11 medium was used for maintenance of *Oscillatoria agardhii* (Carmichael, 1986) and Nitrogen free formula for *Anabaena sphaerica*. The cultured media were incubated at 30 ± 2 °C without aeration and under continuous illumination of fluorescent lamps with intensity 2500 lux. The cultures were shaken every day to prevent algal cell clumping and adherence of algal cells to the containers.

Preparation of Algal Extracts

After 10-day cultivation period, exponentially grown algal cells were harvested, washed with distilled water (3 times), weighted, and used for the following analysis. The algal pellets (37 g) were extracted using serial Exhaustive Extraction Method (Das *et al.*, 2010) with methanol, acetone, and water. All extracts were dried and weighed to estimate the concentration in 1 ml. Dried extracts were either reconstituted in ethanol or deionized water.

Estimation of Total Phenolic Content

Total phenolic (TP) contents were determined by the spectrophotometric method (Slinkard and Singleton, 1977). In brief, a 0.5 ml of each extract was made up to 3 ml with distilled

water, and then mixed with 0.5 ml of Folin-Ciocalteu's phenol reagent. After 5 min, 2 ml of a 2 % Na_2CO_3 solution were added to the mixture and thoroughly mixed. The mixture was kept at 30 °C for 60 min in dark place, and then the absorbance was recorded at 650 nm. The TP was determined from extrapolation of calibration curve that was constructed by standard concentrations of gallic acid solution. Estimation of phenolic compounds was carried out in triplicate. The TP was expressed as milligrams of gallic acid equivalents (GAE) per g of dried sample.

Determination of Total Flavonoid Content

Total flavonoid (TF) was determined by a colorimetric method as described by Zhishen *et al.*, (1999). A 0.5 ml of each extract was made up to 1 ml with methanol. Afterwards 0.4 ml of distilled water was added followed by 0.3 ml of 5 % NaNO₂ solution and the mixture was left for 5 min. Thereafter, 0.3 ml of (10%) AlCl₃ solution was added and allowed to stand for 6 min. Two ml of (1 M) NaOH solution was added to the mixture and the final volume was adjusted to 10 ml with distilled water. The mixture was thoroughly shaken and allowed to stand for 15 min. Absorbance of the reaction mixture was read at 510 nm. The concentrations of total flavonoids were determined as quercetin equivalents (mg/g of dry weight).

DPPH Radical Scavenging Activity Assay

Quantitative measurement of radical scavenging activity of algal extracts was carried out according to the method described by Blois (1958). Briefly, one ml of 0.1 m M 2, 2-dipheny-l-picrylhydrazyl (DPPH) solution in methanol was added to 3 ml of methanolic extract prepared at different concentrations (50 – 150 μ g/ml). Butyl-4-hydroxyanisole (BHA) was used as a positive control. Discoloration was measured (in triplicate) at 517 nm after incubation for 30 min. The capacity to scavenge the DPPH radical was calculated using the following equation:

DPPH scavenging effect (%) = [**ADPPH - AS / ADPPH**] \times 100 where, ADPPH is the absorbance of the DPPH solution and AS is the absorbance of the solution when the sample extract was added.

Antibacterial Assay

Seven bacterial strains including Gram-negative strains, Escherichia coli ATCC 13706, Salmonella typhimurium ATCC6538, Salmonella senftenberg775w, ATCC43845, Pseudomonas aeruginosa ATCC10145, and Gram+ve strains; Enterococcus faecalis ATCC 43845, Enterococcus facium DSMZ¹ 25389, and Staphylococcus aureus ATCC43300 were tested using agar disc diffusion (ADD) bioassays. Bacterial strains were grown overnight in nutrient broth (Merck) at 37 °C. The agar media were seeded by bacterial suspensions adjusted to 106CFU/ml. Sterile filter paper discs (6 mm diameter) were saturated with 750 µg/ml of the crude extracts. The Petri dishes were placed for 5 h at 4 °C till the metabolites release into the medium. The plates were incubated at 37 °C for 24 h. The antibacterial activity was determined by measuring the diameters of the clean inhibitory zone (IZ) around each paper disc (Jassbi et al., 2002).

Gas Chromatography/Mass Spectrometry (GC/MS)

The volatile constituents from methanol and acetone extracts of Oscillatoria agardhii and Anabaena sphaerica were analyzed by GC/MS using a Thermo Scientific Capillary Gas Chromatography (model Trace GC ULTRA) directly coupled to ISQ Single Quadruple MS. The dried extracts were re-dissolved in petroleum ether (40-60 °C). Soluble constituents from the organic fraction were collected using separating funnel. The fraction was re-dissolved in diethyl ether and subjected to GC/MS analysis. The GC/MS analysis was performed on a TG-5MS nonpolar 5 % phenyl methyl polysiloxane capillary column ($30m \times$ 0.25 mm ID \times 0.25 µm) under the following conditions: oven temperature program from 40 °C (3 min) to 280 °C at 5 °C/min, then isothermal at 280 °C for 5 min, flow rate of carrier gas (Helium) was 1 ml/min, the injected sample volume was 1 µl, splitless injection technique, and ionization energy of 70 eV in the electron ionization (EI) mode. Identification was carried out by comparing the retention indices and fragmentation pattern in mass spectra with those of published mass spectra data (Fujise et al., 2010). In very few cases, identification of some components was conducted by means of commercial libraries (Wiley9 and NIST08).

Statistical Analysis

The experimental results were expressed as mean \pm standard error of mean (SE) of three replicates using the website http://easycalculation.com/statistics/standard-error-calculator.php.

RESULTS AND DISCUSSION

Total Phenolic (TP) and Total Flavonoid (TF) Contents

Phenolic compounds, including flavonoids, phenolic acids, and tannins are considered to be the major contributors to the antioxidant property of higher plants. These compounds also possess diverse biological activities, such as anti-inflammatory, anti-atherosclerotic, and anti-carcinogenic activities (Fresco et al., 2006). The total phenolics and flavonoids of three different solvent extracts (methanol, acetone and water) of Oscillatoria agardhii and Anabaena sphaerica are presented in Table (1). The highest phenolic content was found in both methanol and acetone extracts $(20.91 \pm 0.21 \text{ and } 16.23 \pm 0.03 \text{ mg/g gallic acid equivalent})$ of Oscillatoria agardhii in comparison to aqueous extract. However Anabaena sphaerica species gave 14.81±0.02 and 5.27±0.11 mg/g gallic acid equivalent, respectively. For flavonoid, the highest value of 12.11 ± 0.02 mg/g quercetin equivalent was observed in methanol extract of Oscillatoria agardhii, followed by the acetone and water extract of $(11.09 \pm 0.02 \text{ and } 5.06 \pm 0.07 \text{ mg/g} \text{ quercetin})$ equivalent) in Oscillatoria agardhii. The lowest flavonoid content was noticed from the water extract of Anabaena sphaerica (3.21 \pm 0.03 mg/g quercetin equivalent). Variations in TP, and TF contents across species were observed using three solvents with different polarities, as shown in Table (1). The difference perhaps could be attributed to genetic factors between both algal species.

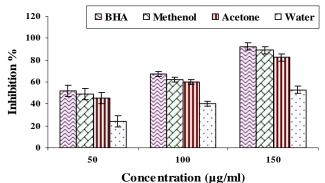
These variations could be attributed to the polarity of the solvents, the type of phenolic, and flavonoids mixtures present in

each species (Hemalatha et al., 2013). Methanol was considered to be the best solvent for extraction of TP and TF. These findings agreed with the earlier investigation by Uma et al., (2011) and they clearly explain that the methanolic extract found to be having higher phenolic content in D. olivaceous and flavonoid content was high in acetone extract of C. humicola. Flavonoids of marine algae are widely distributed with different biological activities which may lead to the useful adjunct for the treatment of multiple disease categories from marine resources (Markham, 1988). According to Manivannan et al., (2012) methanol extract of Chlorella marina exhibited higher activity which was followed by diethyl ether and hexane extracts. This may be due to the differences in the polarity of the solvents used. Results also showed that, among all the solvent; methanol and acetone were better solvents for effective extraction of phenolic compounds as compared to other solvent like water. This might be due to the higher solubility of phenolics in highly polar solvents. The way of determination of the level of total phenolic is not based on absolute measurements of the amounts of phenolic compounds, but is in fact based on their chemical reducing capacity relative to gallic acid. It is very important to point out that; there was a positive relationship between antioxidant activity and amount of phenolic compounds of the crude extracts (El-Baz et al., 2010).

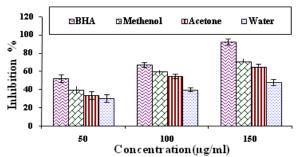
 Table 1: Total phenolic and flavonoid contents of Oscillatoria agardhii and Anabaena sphaerica in different solvent extracts.

	Solvents extract		
Algal species	Methanol	Acetone	Water
	Total phenolic (mg/g d.wt)		
Oscillatoria agardhii	20.91 ±0.21	16.23±0.03	8.04±0.02
Anabaena sphaerica	14.81±0.02	5.27±0.11	4.34±0.07
	Total flavonoid (mg/g d.wt)		
Oscillatoria agardhii	12.11±0.04	11.09±0.02	5.06±0.07
Anabaena sphaerica	3.54±0.01	4.52±0.09	3.21±0.03

 $(n=3, value=mean \pm SE)$


DPPH Radical Scavenging Activity

DPPH is a stable free radical and accepts an electron or hydrogen radical to become a stable diamagnetic molecule (Pinelo et al., 2004). In fact, free radical scavenging method (DPPH) show the reduction of alcoholic DPPH solutions in the presence of an hydrogen donating antioxidant (Koleva et al., 2002) and phenolic compound have been reported to be potent hydrogen donators to DPPH because of their excellence structural chemistry (Von Gadow et al., 1997). The reduction capability of DPPH radical is determined by the decrease in its absorbance at 517 nm, induced by antioxidants. The decrease in absorbance of DPPH radical is caused by antioxidants, because of the reaction between antioxidant molecules and radicals, progresses, which results in the scavenging of the radical by hydrogen donation. It is visually noticeable as a change in color from purple to yellow. Results obtained from antioxidant activity evaluation of two microalgae strains extracts by different solvents using DPPH freeradical reduction method at three different concentrations (50


 μ g/ml, 100 μ g/ml, and 150 μ g/ml) have been shown in Fig. (1). As depicted in this figure, the extract of Oscillatoria agardhii obtained by methanol solvent possessed the highest antioxidant activity, with (49.2 %) of inhibition of DPPH radical at 50µg/ml followed by the acetone and water extracts with activity (45.1% and 23.9 % of inhibition of DPPH radical, respectively) at the same concentration (50 µg/ml). We used BHA as standard synthetic antioxidant compound. The scavenging effects of methanolic extracts from Oscillatoria agardhii and BHA standard on the DPPH radical decreased in the order of BHA > methanol extract > acetone extract > water extract which were 92.4, 89.1. 82.5 and 52.9% at the concentration of 150 µg/ml, respectively. The free radical scavenging activity of methanolic extract was superior to that of other extracts. Similar to Oscillatoria agardhii, the Anabaena sphaerica was useful in DPPH radical scavenging activity and its antioxidant activity increased by increasing sample concentration. But generally, the antioxidant activity of Anabaena sphaerica was less in comparison to Oscillatoria agardhii. The scavenging effect of different solvent extracts of Anabaena sphaerica and BHA standard on the DPPH radical decreased in following order: BHA >methanol extract > acetone extract >water extract having inhibition value, 92.4, 70.7, 64.7, 48.1 % respectively at 150 µg/ml as shown in (Fig 2). As illustrated in Fig (1, 2), it was found that the methanolic extracts of Oscillatoria agardhii and Anabaena sphaerica had a noticeable effect on scavenging free radicals. However, the scavenging effect of BHA still higher than methanolic extracts of Oscillatoria agardhii and Anabaena sphaerica respectively.

The involvement of free radicals, especially their increased production, appears to be a feature of most, if not all human diseases, including cardiovascular disease and cancer (Deighton et al., 2000). However, Sivakumar and Rajagopal, (2011) reported that the highest antioxidant activity was observed in methanol extract from eight green algal species. However Uma et al., (2011) observed that the methanolic extracts displayed greater potential in all antioxidant assays when compared to ethanolic and acetone extracts of green microalgae Desmococcus olivaceous and Chlorococcum humicola. Similarly, Lee et al., (2010) reported that 80 % methanol extract and organic solvent chloroform, and fractions (n-hexane, ethyl acetate of Halochlorococcum porphyrae and Oltamannsiellopsis unicellularis showed notable activities indicating the higher efficacy for scavenging of free radicals.

These implications are important as radical scavengers may protect cell tissues from free radicals, thereby preventing diseases such as cancer. Free radicals such as superoxide radical (O₂), hydroxyl radical (OH) and other reactive oxygen species are associated with multistage carcinogenesis and mutagenesis. In previous study, several polysaccharides have been described to be potent antioxidants and there was a direct relationship between the uronic acid contents and the radical-scavenging effects of *Spriulina platensis* polysaccharide conjugates (Mendiola *et al.*, 2007).

Fig. 1: Radical scavenging activity of *Oscillatoria agardhii* of different solvent extracts at different concentration by DPPH method. (n=3, value= mean \pm SE).

Fig. 2: Radical scavenging activity of *Anabaena sphaerica* of different solvent extracts at different concentration by DPPH method. (n=3, value= mean \pm SE).

Antibacterial Activity

The results obtained from the present study concerning the antibacterial effects of algal extracts against seven species of bacteria were recorded in Table (2). It was concluded that the diameter of inhibition zone depends mainly on the type of the algal species, type of solvent used and the tested bacterial species. The experimental analysis of antibacterial effects indicated that all tested bacterial strains showed higher sensitivity to the acetone extract of Oscillatoria agardhii with the highest antibacterial activity against Salmonella senftenberg (24 mm inhibition zone) as shown in Table (2). Whereas the methanol extract showed moderate activity against all bacterial species with highest value in case of Enterococcus facium (9 mm inhibition zone) and Salmonella typhimurium (7 mm inhibition zone). At the same time the results of acetone and methanol extracts of Anabaena sphaerica revealed their antibacterial effect against all tested bacterial except Salmonella typhimurium. These results go in harmony with those obtained by Volk and Furkert, (2006), they found that some microalgae had highest biological activity against Bacillus subtilis, Bacillus thungiensis, Bacillus megaterium, Escherichia coli, Pseudomonas aeruginosa, Candida tropicalis and Sauatromyces cerevisiae. The present results revealed the ineffectiveness of aqueous extracts against tested bacterial species except for Escherichia coli in case of aqueous extract of Oscillatoria agardhii. In contrast, Sethubati and Prabu, (2010), reported that aqueous algal extracts of Oscillatoria sp, Phormidium sp and Lyngbya majuscule exhibited antimicrobial activity on both Gram positive and Gram negative organisms.

The alcoholic extracts had more antibacterial effects than aqueous extract that may be due to the presence of phenolic and flavonoids which had poor water solubility leading to their lowered concentration in aqueous extract rather than in the alcoholic one. It was also reported that the phenolic content are active as antibacterial against different types of microorganisms like Salmonella typhi (Ouattara et al., 2011) and the flavonoids are reported as active against several strains like Streptococcus (Shu et al., 2011); Escherichia coli and Staphylococcus aureus (Gao and Zhang, 2010). Additionally, Ishida et al., (1997) mentioned that the acetone extract of cyanobacteria revealed antibacterial activity on Escherichia coli, Bacillus subtilis and Pseudomonas aeruginosa. The results of Abdo et al., (2012), also proved that methanol and water extracts of several species of fresh water algae Chroococcus including Anabaena sphaerica, turgidus. Oscillatoria limnetica and Spirulina platensis (Cyanobacteria) and Cosmarium leave (green algae) exerted antibacterial activity Escherichia coli, Salmonella typhimurium and against Streptococcus faecalis. In contrast, our results of water extract showed no antibacterial effect against all bacterial species except Escherichia coli. Thus, our results proved that acetone and methanol were the best solvents for extracting the antibacterial and antioxidant agents from Oscillatoria agardhii and Anabaena sphaerica. In our study, fresh algal sample was used for extraction. It has been reported that extracts obtained from fresh algae exhibit more antibacterial activity than extracts from air-dried algae because some substances may be lost during drying process. For example, it has been shown that extracts of fresh Gracilaria gracilis and Ectocarpus siliculosus exhibit antibacterial activity against Staphylococcus aureus, Streptococcus epidermidis, Escherichia coli, Pseudomonas aeruginosa and Enterococcus faecalis, however, extracts from dried samples of these algae do not show antibacterial activity on mentioned tested bacteria (Tüney et al., 2006).

Table. 2: Antibacterial activity (inhibition zone) of *Oscillatoria agardhii* and *Anabaena sphaerica* extracts at 750 µg/ml concentration.

	Diameter of inhibition zone (mm)					
Bacterial strains	Oscillatoria agardhii		Anabaena sphaerica			
	Acetone	methanol	Water	Acetone	methanol	Water
Escherichia coli	6	5	3	5	2	N.D
Salmonella typhimurium	6	7	N.D	2	N.D	N.D
Pseudomonas aeruginos	a 10	3	N.D	3	4	N.D
Salmonella senftenberg	24	3	N.D	6	2	N.D
Enterococcus facium	12	9	N.D	2	6	N.D
Enterococcus faecalis	11	5	N.D	2	2	N.D
Staphylococcus aureus	15	3	N.D	5	4	N.D

N. D: Not detected

GC/MS Analysis

The GC/MS analysis of *Oscillatoria agardhii* methanolic and acetone extracts resulted in the identification of 40 compounds; however a few of them were predominant (Table 3). The major compound was 5,11,17,23-Tetra-t-butyl-25,26,27,28tetrahydroxycalix-4-arene which presented in both methanolic and acetone extracts at (2.55 and 2.94 %), respectively. In Table (4) the GC/MS analysis of the methanol and acetone extracts of *Anabaena* sphaerica resulted in many compounds which have diverse use. Compounds having anti-inflammatory, antibacterial, antifungal, properties have been identified. For methanolic extract, the highest concentrations were cyclopentaneundecanoic acid, methyl ester (11.06 %), followed by methyl decadienoate (6.10%). Whereas the major compounds estimated in acetone extract were, N-Methylyunaconitine-3-ol, (4.11%) followed by the 1-Pentanol (3.11%).This result is in agreement with a previous result of Castilho *et al.*, (2012) who identified 1-hexacosanol, as one component of oregano essential oil using GC/MS. They also reported that non-esterified 1-hexacosanol could act as an antimicrobial and antioxidant compound. Moreover, the biological activity of some triterpenoid such as phytoene (PE) and phytofluene (PF) were reported by Engelmann *et al.*, (2011).

 Table. 3: Chemical composition of methanol and acetone extract of the Oscillatoria agardhii extracts using GC/MS analysis.

No.	Common da	Composition (%)		
INO.	Compounds	Methanol	Acetone	
1	Ç-Carotene,3',4'-didehydro- 1',2'dihydro- 1',2'dihydroxy-	2.05	-	
2	26,28-Dihydroxy-25,27-dioxaocta-4-ene- 2,6-diynyl-p-tertbutylcalix[4]arene	1.93	-	
3	5-(4-Hydroxyphenyl)-10,20-bis(3- methoxyphenyl)-15-propylporphyrin	1.72	-	
4	8-O-Methyl-Falconerine 5"-(1,1-Dimethylethyl)-2,2',2",2"',2"''-	2.51	-	
5	pentam ethoxy[1,1':3',1":3",1'":3"'.1""- quinquephenyl]-3,3""-dicarboxyaldehyde	2.26	2.11	
6	5,10-bis-(3-aminophenyl)-15,20- diphenylporphyrin	2.32	2.41	
7	Penitrem A	1.94	1.78	
8	1-Hexacosanol	4	-	
9	5,11,17,23-Tetra-t-butyl-25,26,27,28- tetrahydroxycalix-4-arene	2.55	2.94	
10	Eicosanoic acid, methyl ester (CAS)	9.57	-	
11	Cis-3,7-Dimethyl-1,3,6-octatriene	3.46	-	
12	N-Methyl-yunaconitine-3-ol	2.21	2.04	
13	Phytofluene	-	2	
14	Lipo-3-episapelin A	-	4.62	
15	Carotene, 3, 3', 4, 4'-tetradehydro-1, 1', 2, 2'- tetrahydro1, 1'-Dimethoxy-2, 2'-dioxo-	-	2.78	
16	2-Propenoic acid,2-methyl, dodecyl ester	-	1.76	
17	Hexadecyl-phenol isomer	-	1.74	
18	p-Nonylphenol	-	1.91	
19	9-Octadecenal	-	4.01	
20	1-Tetradecene	-	1.8	
	Tetra-tert-butyl-2,6-di-(3-propenyl)-3,7-			
21	dimethoxybicyclo[3.3.0]-octa-3,7-diene-	2.32	1.85	
	2,4,6,8-dicarboxylate			
	N,N'-Dicyclohexyl-1-cyano-7-			
22	pyrrolidinylperylene-3,4:9,10-tetracar boxylic acid Bisimide	-	3.5	

As it is well known that triterpenoid have antioxidant activity, Inada *et al.*, (1994) isolated Lipo-3-episapelin A (limonoid group) as a new triterpenoid derivative from *Trichilia connaroides*. Additionally, ginkgetinis known as a natural biflavone and was previously isolated from *Selaginella moellendorffii Hieron*, (Su *et al.*, 2000), and the anticancer effect of ginkgetin was evaluated using MTT assay in three different human cell lines: ovarian adenocarcinoma (OVCAR-3), cervical carcinoma (HeLa) and foreskin fibroblast (FS-5). The authors reported that ginkgetin have cytotoxic effect in a human ovarian adenocarcinoma cell line. The methanol extract of the present work contains ginkgetin at

1.71%. Spectral data by GC/MS showed that a mixture of fatty acids characterized some bioactive compounds primarily consisting of 9-Octadecenal which may be involved in control of human pathogens, pests, termites and maggots (Manilal *et al.*, 2011).

Moreover, based on Biacs and Daood, (2000) lycoxanthin had antioxidant activity. The acetone extract of *Anabaena sphaerica* contains lycoxanthin at 2.15 %. This study explores the goodness of both Cyanobacteria species which has a commendable sense of purpose and can be advised as a phytopharmaceutical importance.

 Table.
 4: Chemical composition of methanol and acetone extract of the

 Anabaena sphaerica extracts using GC/MS analysis.

No.	Compounds	Composition (%)		
INO.	Compounds	Methanol	Acetone	
1	2,7,12,17-Tetramethyl-3,5:8,10:13,15:18,20-	2.45		
	tetrakis-(2,2-dimethylpropano) porphyrin	2.45	-	
2	Tetra-tert-butyl-2,6-di-(3-propenyl)-3,7-			
	dimethoxybicyclo-[3.3.0]-octa-3,7-diene-	2.16	1.90	
	2,4,6,8-dicarboxylate			
3	3-Hydroxy-1-(4-{13-[4-(3-hydroxy-3-			
	phenylacryloyl)phenyl]-tridecyl}-phenyl)-3-	2.86	-	
	phenylprop-2-en-1-one			
4	26,28-Dihydroxy-25,27-Dioxaocta-4-ene-2,6-	1.66	2.21	
-	diynyl-p-tert-butylcalix [4] arene			
5	5,11,17,23-Tetra-t-butyl-25,26,27,28-	2.07	-	
~	tetrahydroxycalix-4-arene	1.66	2.22	
6 7	Penitrem A 5à-Cholestan-7à-yl-4-(à-	1.66	2.22	
/	Hydroxyphenylmethyl) phenylacetate-25,à-	1.52		
	ether	1.52	-	
8	1,1-Di(4-methylcyclohexyl) dodecane	2.04	_	
9	5,10-bis-(3-aminophenyl)-15,20-			
	diphenylporphyrin	1.70	2.18	
10	Cyclopentaneundecanoic acid, methyl ester	11.06	-	
11	17-Octadecynoic acid	3.88	-	
12	Methyl decadienoate or 11,14,17-	6.1.0		
	Eicosatrienoic acid, methyl ester	6.10	-	
13	Ginkgetin (CAS)	1.71	-	
14	psi., psiCarotene, 3, 3', 4, 4'-tetradehydro-	1.40		
	1,1',2,2'-tetrahydro1,1'-Dimethoxy-2,2'-dioxo-	1.40	-	
15	N-Methylyunaconitine-3-ol	-	4.11	
16	3-Acetoy-8-deacetoxy-yunaconitine	-	2.31	
17	5,15-Bis-(3-methoxyphenyl)-10-phenyl-20-		2.37	
	propylporphyrin	-	2.37	
18	Lycoxanthin	-	2.15	
19	1-Pentanol (CAS)	-	3.11	
20	10,13,14,17-Tetraethyl-11,16-			
	dimethylphenanthrolinoporphyrin	-	2.38	
	For For For			

CONCLUSION

Extraction with different solvents could affect the yield of total phenols, antioxidant, and antibacterial activities of *Oscillatoria agardhii* and *Anabaena sphaerica*. The most efficient solvent for phenolic extraction and radical scavenging activity are methanol and acetone. The existing data is not sufficient to explain the mechanism of action; however, it may enrich the strength of comprehensive data of antioxidant activity of *Oscillatoria agardhii* and *Anabaena sphaerica*. The antibacterial activity may be due to the presence of terpenes or other constituents in both crude extract. Methanol and acetone extracts were bacteriostatic against the tested microorganisms. It is suggested that further work is needed to isolate and identify bioactive compounds from both Cyanobacteria species, which might be useful for therapeutic purposes.

REFERENCES

Abdo S.M., Hetta M.H., Samhan F.A., El Din R.A.S. and Ali G.H. Phytochemical and antibacterial study of five freshwater algal species. Asian J. Plant Sci. 2012; 11(3): 109-116. DOI: 10.3923/ajps.2012. 109.116

Abed R.M.M., Dobrestov S., Al-Kharusi S., Schramm A., Jupp B., GolubicS. Cyanobacterial diversity and bioactivity of inland hypersaline microbial mats from a desert stream in the Sultanate of Oman. Fottea. 2011; 11:215-224.

Biacs P.A., Daood H.G. Lipoxygenase-catalysed degradation of carotenoids from tomato in the presence of antioxidant vitamins. Biochem Soc Trans. 2000 ;28(6):839-45.

Blois M.S. Antioxidant determinations by the use of a stable free radical.Nature.1958; 26: 1199- 1200. doi:10.1038/1811199a0

Carmichael W.W. Isolation, culture and toxicity testing of toxic fresh water cyanobacteria (blue-green algae). In: Shilo V, editor. Fundamental research in homogeneous catalysis, vol. 3. NewYork: Gordon& Breach Publ.1986; P. 1249.

Castilho P.C., Savluchinske-Feio S., WeinholdT.S.,Gouveia S.C..Evaluation of the antimicrobial and antioxidant activities of essential oils, extracts and their main components from oregano from Madeira Island, Portugal. Food Cont.2012; 23 :552-558. DOI: 10.1016/j.foodcont.2011.08.031

Das K., Tiwari R.K.S. and Shrivastava, D.K. Techniques for evaluation of medicinal plant products as antimicrobial agent: Current methods and future trends [J]. J. Med. Plants Res.2010; 4: 104-111. DOI: 10.5897/JMPR09.030

Deighton N., Brennan R., Finn C. , Davies H.V. Antioxidant properties of domesticated and wild Rubus species, J. Sci. Food Agric. 2000; 80: 1307-1313. DOI: 10.1002/1097-0010(200007)

El-Baz F.K., Mohamed A.A., Ali S.I. Callus formation, phenolics content and related antioxidant activities in tissue culture of a medicinal plant colocynth (Citrullus Colocynthis). Nova Biotech.2010; 10: 79-94.

Engelmann N.J., Clinton S.K., Erdman J.W. Jr. Nutritional Aspects of Phytoene and Phytofluene, Carotenoid Precursors to Lycopene. Adv.Nutr .2011; vol. 2: 51-61, doi: 10.3945/an.110.000075

Fresco P., Borges F., Diniz C., Marques M.P.M. Newinsights on the anticancer properties of dietary polyphenols. Med. Res. Rev. 2006; 26: 747–766. 10.1002/med.20060

Fujise D., Tsuji, K., Fukushima, N., Kawai, K., Harada, K. Analytical aspects of cyanobacterial volatile organic compounds for investigation of their production behavior. J. Chromatogr. A. 2010; 1217, (39): 6122–6125. 10.1016/j.chroma.2010.07.008

Gao D., Zhang Y. Comparative antibacterial activities of crude polysaccharides and flavonoids from *Zingiber officinale* and its extraction. Asian J. Trad. Med. 2010; 5: 235-238.

Goud M.L., Seshika A.D., Charya M.A.S. Antibacterial activity and Biomolecular composition of certain freshwater micro-algae from river Godavari (India). Sci. World J.2007; 2: 19-23.

Hemalatha A., Girija K., Parthiban C., Saranya C., Anantharaman, P. Antioxidant properties and total phenolic content of a marine diatom, *Navicula clavata* and green microalgae, *Chlorella marina* and *Dunaliella salina*. Adv. Appl. Sci. Res. 2013; 4(5): 151-157.

Hussain A. I., Anwar F., Sherazi S. T. H. and Przybylski R. Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations," Food Chem.2008; vol. 108, no. 3, pp. 986–995

Inada A., Konishi M., Murata H. og Nakanishi, T. Structures of a new limonoid and a new triterpenoid derivative from pericarps of *Trichilia connaroides*. J. Nat. Prod. 1994; 57, 1446-1449. DOI: 10.1021/np50112a016

Ishida K., Matsuda H., Murakami M. and Yamaguchi K., Kawaguchipetin B. An antibacterial cyclic undecapeptide from the cyanobacterium *Microcystis aeruginosa*. J. Nat. Prod.1997; 60: 724-726. DOI: 10.1021/np970146k

Jassbi A.R., Zamani-zadehNajari S., Azar P.A., Tahara S. Antibacterial diterpenoids from *Astragalus brachystachys*. Z. Naturforsch. C.2002; 57: 1016-1021.

Koleva, I.I., Van Beek, T.A., Linssen, J.P.H., de Groot, A. Screening of plant extracts for antioxidant activity: a comparative study on three testing methods. Phytochem.Anal.2002; 13: 8-12. DOI: 10.1002/pca.611

Lee S.H., Lee J.B., Lee K. W., Jeon Y. J. Antioxidant prosperities of tidal pool microalgae *Halochlorococcum porphyrae* and *Oltamannsiellopsis unicellularis* from Jeju Island, Korea, Algae, 2010; 25(1): 45-56. DOI: 10.4490/algae.2010.25.1.45

Manilal A., Sujith S., Sabarathnam B., Kiran G.S., Selvin J., Shakir C, Lipton A. P. Biological activity of the red alga *Laurencia brandenii*. Acta Bot. Croat.2011; 70 :(1) 81–90. DOI: 10.2478/v10184-010-0001-x

Manivannan K., Anantharaman P., Balasubramanian T.Evaluation of antioxidant properties of marine microalga *Chlorella marina* (Butcher, 1952).Asian Pacific J. Trop. Biomed. 2012; S342-S346. DOI: 10.1016/S2221-1691(12)60185-3

Markham K.R. Distribution of flavonoids in the lower plants and its evolutionary significance. In: The Flavonoids, Advances in Research since 1980. (Ed.): J.B Harborne. Academic Press, New York, 1988; 427-468.

Mendiola J., Jaime L., Santoyo S., Reglero G., Cifuentes A., Ibanez E. Screening of functional compounds in supercritical fluid extracts from *Spirulina platensis*. Food Chem. 2007; 102:1357–1367. DOI: 10.1016/j.foodchem.2006.06.068

Ouattara L., Koudou J. ,Zongo C., Barro N., Savadogo A., Bassole I.H.N., Ouattara A.S. ,Traore A.S. Antioxidant and antibacterial activities of three species of Lannea from Burkina Faso. J. Applied Sci.,2011; 11: 157-162. DOI: 10.3923/jas.2011.157.162

Patra J.K., Rath S.K., Jena K. Rathod V.K., Thatoi H.N. Evaluating of antioxidant and antimicrobial activity of sea weed (*Sargassum* sp.) extract: A study on inhibition of Glutathione-S transferase activity. Turkish Journal of Biology 2008; 32, 119-125.

Pinelo M., Rubilar M., Sineiro J., Nunez M. J. Extraction of antioxidant phenolics from almond hulls (*Prunus amygdalus*) and pine sawdust (*Pinus pinaster*). Food Chem.2004; 85: 267–273. DOI: 10.1016/j.foodchem.2003.06.020

Rama-murthy V., Raveendran S., Thirumeni S., Krishnaveni S. Antimicrobial activity of heterocytic cyanobacteria. Int. J. Adv.Lif.Sci. 2012; 1:32-39.

Sashidhar N.S. Studies on bioactive natural compounds for their antimicrobial and antioxidant properties, Ph.D Thesis, Submitted to Osmania University, Hyderabad, India 2002.

Sethubathi B.V.G. ,Prabu A.V. Antibacterial activity of cyanobacterial species from adirampattinam coast, southeast coast of palk bay, Curr.Res. J. Biol. Sci. 2010; 2: 24-26.

Shu Y., Liu Y., Li L., Feng J., Lou B., Zhou X. and Wu H. Antibacterial activity of quercetin on oral infectious pathogens. Afr. J. Microbiol. Res. 2011; 5: 5358-5361.

SivaKumar K. ,Rajagopal S. V. Radical scavenging activity of green algal species, Journal of Pharmacy Research 2011; vol. 4, no. 3, pp. 723–725.

Slinkard K., Singleton V.L. Total phenol analyses: automation and comparison with manual methods. Am. J. Enol. Vitic.1977; 28, 49–55.

Su Y., Chang-Ming S. Hao-Hsuan C., Pei-Teh C. Studies on the cytotoxic mechanisms of ginkgetin in a human ovarian adenocarcinoma cell line Naunyn-Schmiedeberg's Arch.Pharmacol. 2000;362:82–90. DOI: 10.5897/AJMR11.849

Tuney I., Cadirci B.H., Unal D.,Sukatar A. Antimicrobial activities of the extracts of marine algae from the coast of Urla (Izmir, Turkey). Turkish Journal of Biology.2006; 30: 171-175.

Uma R., Sivasubramanian V., Niranjali Devaraj S. Preliminary phycochemical analysis and *in vitro* antibacterial screening of green micro algae, *Desmococcus Olivaceous*, *Chlorococcum humicola* and *Chlorella vulgaris*. J. Algal Biomass Utln.2011; 2(3): 82–93.

Venugopal V., Sood A., Prasanna R. and Kaushik B.D. Glucose stimulated accumulation of phycobiliproteins in Anabaena strains. Indian Hydrobiol.2005; 8: 157-165.

Volk R.B. ,Furkert F.H. Antialgal, antibacterial and antifungal activity of two metabolites produced and excreted by cyanobacteria during growth. Microbial. Res. 2006; 161: 180-186. DOI: 10.1016/j.micres. 2005.08.005

Von Gadow A, Joubert E, Hansmann C.F. Comparison of the antioxidant activity of rooibos tea (*Aspalathus linearis*) with green, oolong and black tea. Food Chem. 1997;60: 73–77. DOI: 10.1016/S0308-8146(96)00312-3

Wu S.C., Wang F.J., Pan C.L. The comparison of antioxidative properties of seaweed oligosaccharides fermented by two lactic acid bacteria. J Mar. Sci. Tech. 2010; 18(4):537-45.

Yuan Y. V.and Walsh N.A. Antioxidant and antiproliferative activities of extracts from a variety of edible seaweeds, Food Chem. Toxicol. 2006; 44: 1144-1150.

Zhishen J., Mengcheng T., Jianming W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999; 64(4): 555-559. DOI: 10.1016/S0308-8146(98)00102-2

How to cite this article:

Azza M. Abd El-Aty, Amal Amin Mohamed, Farag Samhan. *In Vitro* Antioxidant and Antibacterial Activities of Two Fresh Water Cyanobacterial Species, *Oscillatoria agardhii* and *Anabaena sphaerica*. J App Pharm Sci, 2014; 4 (07): 069-075.