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Dysregulation of P70 ribosomal S6 kinase (P70S6K) has been observed in many cancers; therefore, the design of 
new molecules targeting p70S6K of paramount importance in cancer therapy. The current study employed a 
group-based quantitative structure-activity relationship (GQSAR) to develop global QSAR models capable of 
predicting the bioactivity of P70S6K inhibitors. A wide variety of chemical structures and biological activities 
(half maximal inhibitory concentration) of P70S6K inhibitors were collected from the binding database website. 
Compounds were classified into various chemical groups and then fragmented into R1, R2, and R3 fragments 
based on certain pharmacophoric features required for ligand-target biointeractions. Different two-dimensional 
fragment-based descriptors were calculated for each fragment. The dataset was then divided into a training set 
(n=40) and a test set (n=10) using a sphere exclusion algorithm. Multiple linear regressions coupled with 
simulated annealing or stepwise regression resulted in model A (r2=0.92) and model B (r2=0.87), respectively. 
Leave-one-out validation showed that models A and B have internal predictive abilities of 72% and 61%, 
respectively. External validation indicated that both models are robust, with squared cross-correlation coefficients 
of the training set (pred-r2) of 0.87 and 0.89, respectively. The developed GQSAR models indicate that fragment 
R3 plays a key role in activity variation (65%) with sound contribution of five-membered rings (5 chain count), 
aromatic carbons (SaaaCE-index), and aromatic nitrogens (SaaNcount). In contrast, fragments R1 and R2 
together contribute 35% of activity variation, suggesting that sulfur atoms (Sulfur count) and hydrophobic three-
membered rings (chi3 chain) at R1 are preferable for inhibitory activity. 
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INTRODUCTION 
 

The P70 ribosomal S6 kinase (P70S6K) is a 
serine/threonine kinase that belongs to the protein kinase A/protein 
kinase G/protein kinase C family. In humans, there are two 
isoforms of P70, P70 ribosomal S6 kinase 1 (S6K1) and p70 
ribosomal S6 kinase 2 (S6K2). Activation of P70S6K1 occurs 
through insulin and growth factor stimulation of PI3K 
(phosphoinositide 3-kinase) and mTOR (mammalian target of 
rapamycin) signaling pathways by insulin and growth factors 
(Vivanco and Sawyers, 2002). P70S6K, in turn, increases protein 
synthesis, growth, proliferation, and longevity through translation  
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of mRNA that possesses five polypyrimidine tracts. P70S6K has 
been implicated to promote malignant transformation of cancers. 
Fluorescence in situ hybridization of breast cancer tissues revealed 
amplification of P70S6K together with other genes on 17q22-q24. 
This is accompanied by its increased expression, which contributes 
to more aggressive clinical outcomes in patients (Bärlund et al., 
2000b). Other studies showed P70S6K is amplified and over 
expressed in MCF-7 cells compared with normal mammary 
epithelium (Bärlund et al., 2000a) and is an essential part of 
neoplasia in many cancerous cell lines, such as A549 (Bussenius et 
al., 2012) and Sf21(Davies et al., 2000). Considering the role of 
P70S6K1 in cancer, development of P70S6K1 inhibitors would be 
of paramount importance in cancer therapy. Generally, kinases have 
similar catalytic domains, and their activation requires 
phosphorylation of an important residue in the activation loop (T-
loop). In P70S6K1, phosphorylation of residue  T229 in  the T-loop 
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depends on the phosphorylation cascades of serine/threonine 
residues in the C-terminal regulatory domain. Other kinases, such 
as extracellular signal-regulated kinases 1/2, c-Jun N-terminal 
kinases1/2 and cyclin-dependent kinase 1, have been involved in 
these phosphorylation series (Mukhopadhyay et al., 1992). It was 
reported that residues 236-263 in P70S6K1 comprised the 
activation loop, corresponding to the DFG and (A)PE residues of 
other kinases. In its active state, P70S6K1 binds the β-phosphate 
group of the ATP molecule via the Asp residue located at the 
beginning of the activation loop (Sunami et al., 2010). Many 
chemically diverse P70S6K inhibitors, including 
pyrazolopyrimidines (Bussenius et al., 2012), thiophenes, and 
thiophene-ureas (Ye et al., 2011), have been reported.  

Fragment-based lead design has shown promise in 
current drug discovery and lead optimization efforts. The main 
concept of this method is driving new molecules by combining 
fragments determined based on ligand-target interaction 
information (Schulz and Hubbard, 2009). Recently, many 
successful applications of group-based quantitative structure 
activity relationship (GQSAR) for lead optimization have been 
reported (Ajmani et al., 2010). In GQSAR, molecules are 
fragmented, based on specific molecular sites, bonds, rings, and 
interaction keys with the target, and fragment-based descriptors 
are calculated. In contrast with three-dimensional (3D) QSAR 
techniques that provide information on the whole molecule, 
GQSAR-developed models give hints on the impact of each 
fragment on activity variation and ligand-target bio-interactions. 
Thus, the interpretation of GQSAR models into new molecules is a 
more practical and achievable task compared to 3D QSARs. In 
addition, 3D QSAR is only applicable on congeneric conformers, 
which must be properly aligned to match their pharmacophoric 
sites, whereas conformational analysis and molecular alignment 
are not required to perform GQSAR (Ajmani et al., 2009). A 
comprehensive search in the literature revealed that there is a 
paucity of GQSAR studies on p70S6 kinase inhibitors. In the 
current study, we report two GQSAR models for the inhibition of 
p70S6K. The models were generated and validated using different 
statistical techniques, and the descriptors used in the models are 
discussed and interpreted. Our data highlight important 
requirements for designing innovative and powerful p70S6K 
inhibitors.  

 
METHODOLOGY 
 

Data mining and preparation 
The biological activities and the two dimensional 

structures of 68 p70S6K inhibitors were collected from different 
literature sources (Bamford et al., 2005, Bandarage et al., 2009, 
Charrier et al., 2011, Davies et al., 2000, Lin et al., 2010, Nittoli et 
al., 2010, Okuzumi et al., 2009, Tao et al., 2007, Wang et al., 
2010, Ye et al., 2011). The SDF files of the inhibitors were 
obtained from the BindingDB website, a public online database of 
measured binding affinities, with special focus on interactions of 
druggable target proteins and drug-like small molecules. Although 

the BindingDB is derived mainly from enzyme inhibition and 
kinetics assays, isothermal titration colorimetry, nuclear magnetic 
resonance, and radioligand and competition assays, our study used 
only enzyme inhibition assays in the form of in vitro biological 
activities (Chen et al., 2002)(Chen et al., 2002, Liu et al., 2007) 
(Wikipedia). The in vitro biological activities are expressed as the 
concentration of the compound required to inhibit 50% of the 
enzyme activity (half maximal inhibitory concentration [IC50]), 
which were converted into the negative logarithm (pIC= -log IC50) 
for the QSAR analysis. The two-dimensional (2D) structures were 
converted into the corresponding 3D conformers and the energy 
was batch-minimized by Merck Molecular Force Field using 
convergence criterion (root mean square [RMS] gradient) of 0.01 
kcal/mol and a maximum number of cycles of 100 (Halgren, 
1996). The dataset was filtered based on drug-like 
physicochemical properties described by Lipinski et al. (Lipinski 
et al., 1997), which uses molecular weights less than 500 Da as the 
criterion of filtration. 

 
GQSAR modeling 
Software 

GQSAR modeling was performed using the Molecular 
Design Suite (VLifeMDS software package, version 4.1, from 
Vlife Sciences Technologies Pvt. Ltd., India) on a Windows 7 
operating system. 
 
Fragmentation pattern 

The batch-minimized-generated 3D conformers were 
grouped into different chemical scaffolds, including: 

 Pyridine 
 Imidazo[4,5-c]pyridine 
 2-(furan-e-yl)pyridine 
 Pyrrolo[2,3-d]pyrimidine 
 Peperazine 
 Benzene 
 Pyrrole-2,5-dione 
 Pyrazole 
 Sulfonamide 

Thereafter, they were divided into three molecular 
fragments (R1, R2, and R3). The fragmentation described by 
Akritopoulou-Zanze et al. was executed based on pharmacophoric 
features such as molecular weight, fragment size, hydrophobic 
regions, and hydrogen bond donors/acceptors, including 
heteroatoms (O, N, S) and heterocycles (indole, indazole, 
imidazoles), all of which are required for ligand-target interactions 
(Akritopoulou-Zanze and Hajduk, 2009). Examples of the 
fragmentation pattern of the dataset are presented in Scheme 
1.Fragment R2 consisted of the scaffolds, whereas fragments R1 
and R3 comprised the chemical groups substituted with respect to 
the main scaffold. R1 contains unsaturated rings or long aliphatic 
chains and R3 consists mainly of hetero-aromatic rings. For 
molecules that did not contain such structures, a methyl group or 
hydrogen atom was considered the corresponding fragment.   
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Scheme. 1: Fragmentation patterns of P70S6K inhibitors. Compounds were 
fragmented into three fragments considering the scaffolds as a fragment R2 
(yellow circle), and fragment R1 (blue circle) and fragment R3 (red circle) are 
the substituents with respect to the scaffolds. The scheme was sketched using 
MarvinSketch 5.9.4. 
 
Calculation of fragment-based descriptors 

For the generated fragments, a pool of 464 two-
dimensional descriptors was calculated using the VLifeMDS 
software package. These descriptors include retention index (chi), 
atomic valence connectivity index (chiv), path count, chi chain, 
chiv chain, path cluster, kappa, element count, estate numbers, and 
polar surface area. All descriptors with constant values among the 
dataset were deleted, resulting in 316 different descriptors 
(independent variables) which were used in the QSAR analysis. 
 
Selection of the training and test sets 

In order to compare the biological activities of the set of 
compounds which have a wide range of chemical structures (i.e., 
different fragment-based descriptors), the dataset was divided into 
representative training and test sets using a dissimilarity-based 
compound selection method called sphere-exclusion algorithms 
(Snarey et al., 1997).  

In this algorithm, each compound will be represented by 
one point and the total volume (V) occupied by this point will be 
defined in the multidimensional descriptor space (K) as described 
by Golbraikh (2000). Exclusion starts by constructing a sphere 
whose center is the nearest representative point to the center of the 
dataset having a radius ܴ = ܿ(ܸ|ܰ)ଵ ௄⁄ , where c and N  denote the 
dissimilarity value and the number of compounds in the dataset, 
respectively. Test set will comprise all compounds (representative 
points) included within this sphere apart from the center. The latter 
compounds will be excluded from the dataset and the process will 
be repeated with a new sphere until all points are exhausted 
(Golbraikh and Tropsha, 2003, Snarey et al., 1997). To determine 
the best representing test set, different dissimilarity values were 
used and different statistical parameters for both sets were 
calculated (average, maximum, minimum, and standard deviation).          
 

Optimized variable selection 
Due to the fact that it is tedious and impractical to 

investigate all possible combinations of the  descriptor pool, 
simulated annealing and stepwise regression, which simplify the 
process and reduce the time required to execute algorithms, were 
implemented (Kirkpatrick et al., 1983, Scior et al., 2009).    
 
Simulated annealing 

Simulated annealing (SA) is a global and iterative 
combinatorial optimization method that does not concur with the 
first encountered variable configuration. The main concept of SA 
depends on the physical process of annealing, during which the 
system is melted at a high temperature and cooled slowly until it 
reaches the steady state. In SA, the configuration of system points 
(descriptors) and the cost function (configuration energy) are the 
parameters to be optimized. 

The configuration of system points is defined by 
Boltzmann probability factor of distribution that is in turn 
correlated to the energy of the configuration (E) and the applied 
temperature (T). Lowering T will lead the system towards lower E 
states. At a given temperature, a population of problem 
configurations (subset of descriptors) will be generated and the 
process will be iterated searching for better solution that can be 
effectively defined by Metropolis algorithms. In the Metropolis 
procedure, one variable (descriptor) will be randomly displaced, 
and the difference in the energy states ( ܧ∆ = ௡௘௪ܧ  − ௢௟ௗܧ ) 
between the two configurations is calculated. If ∆ܧ ≤ 0, the new 
configuration will be accepted and used as a starting point for the 
next iteration. If ∆ܧ > 0, a new displacement will be executed 
using different descriptor (Kirkpatrick et al., 1983).  

In the context of QSAR analysis, the squared           
correlation coefficient of the regression (r2) will serve as the cost 
function, whereas the descriptors involved in the final            
regression equation will represent the system configuration (i.e., 
the process aims to give the descriptor combination with the best 
r2).  
 
Stepwise regression 

In stepwise regression, the response (pIC values) regress 
with each term (variables ordescriptors) and the model with the 
highest r2 will be selected. Thereafter, a new variable will be added 
to the most significant model and the bi-term model giving the 
highest r2 will be used in the following step. The process will be 
repeated until none of the terms left out of the model would give 
statistically significant improvement if added to the model 
(Armstrong, 2006).       
 
Model building by multiple linear regression 

To quantitatively describe the relationship between the 
dependent variable (y; the activity) and the selected independent 
variables (x1, x2,....xn,;the calculated values of the descriptors), 
linear regression techniques were employed as follows (1): 

ݕ = ଴ߙ  + ଵݔଵߙ + ଶݔଶߙ + ⋯ .  ௡                       (1)ݔ௡ߙ+
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Where ߙଵ,ߙଶ … .  ଴ is theߙ ௡ are the regression coefficients andߙ+
regression intercept that represents the predicted value when all 
variables have zero value.  To assess the regression relationship, 
Fisher’s test (F-test), the degree of freedom, and the coefficient of 
determination (r2) were calculated from the following equations (2, 
3) (Armstrong, 2006): 

݉݋݀݁݁ݎ݂ ݂݋ ݁݁ݎ݃݁݀ = ݊ − (݇ + 1)                                                   (2) 
Where n and k are the number of compounds in training set and 
the number of variables in the final equation, respectively.  

ݎ =  
ݕݔ∑ − ∑ ݕ∑ݔ ݊⁄

ඥ[∑ݔଶ − ଶݔ∑ ݊⁄ ]ටൣ[∑ݕଶ − ଶݕ∑ ݊⁄ ]൧
                                     (3) 

Where r is the correlation coefficient, n is the number of 
compounds, x and y are the actual and predicted activities.  
 
Model validation 
Internal validation of training set 

To evaluate the robustness of the generated GQSAR 
models, internal validation was performed on the training set using 
the leave-one-out (LOO) method (Tropsha et al., 2003, Zheng and 
Tropsha, 2000). The compounds from the training set were 
removed individually, and the activity of each was predicted using 
the model fitted to the remaining molecules. The process is 
repeated until all compounds in the training set are exhausted, and 
the cross-validated coefficient of determination (q2) was found 
from the equation (4): 

ଶݍ = 1 −
∑ ௜ݕ) − పෝ) ௧௥௔௜௡௜௡௚ݕ
௜ୀଵ

∑ ௜ݕ) − ത)௧௥௔௜௡௜௡௚ݕ
௜ୀଵ

                                                   (4) 

Where ݕ௜ పෝݕ , , and ݕത  denote the actual, predicted, and average 
activity of training set molecules.  
 
External validation of test set 

The predictive power of the developed models was 
further validated using the squared correlation coefficient (pred-r2) 
of the test set (Tropsha et al., 2003). The model was generated 
from training set data, and the pIC values of test set compounds 
were predicted from the model and pred-r2 was determined from 
the following equation:  

݀݁ݎ݌ − 1ଶ = 1−
∑ ௜ݕ) − పෝ)௧௘௦௧ݕ
௜ୀଵ

∑ ௜ݕ) − ത)௧௘௦௧ݕ
௜ୀଵ

                                             (5) 

Where ݕ௜ and ݕపෝ  are the actual and predicted activities of test set 
compounds and ݕത represents the average activity of training set 
molecules.  
 
Randomization and Z-scores test 

Randomization tests have been reported as essential 
validation techniques to evaluate the robustness of the generated 
models (Tropsha et al., 2003, Zheng and Tropsha, 2000). Using 
this method, many models were generated by reorganizing the pIC 
values (the dependent variable) of the entire dataset and the 
training set compounds randomly. A robust and reliable GQSAR 
model should have significantly higher ݎଶ and ݍଶvalues than any 
of the randomly generated models. To assess this assumption, the 
average coefficient of determination values of the random sets 

௔௩ଶݎ)  , ௔௩ଶݍ )and their standard errors (ݎఙଶ ,ݍఙଶ) were calculated. Z-
score values were calculated from the equations (5, 6). Thereafter, 
standard Z-score tables were used to determine the corresponding 
probability of significance value (ߙ): 

ܼ − ݏ݁ݎ݋ܿݏ − ଶݍ =
ଶݍ − ௔௩ଶݍ 

ఙଶݍ
                                                (5) 

ܼ − ݏ݁ݎ݋ܿݏ − ଶݎ =
ଶݎ − ௔௩ଶݎ 

ఙଶݎ
                                                 (6) 

 
Model evaluation criteria  

According to published reports (Ajmani et al., 2010, 
Tropsha et al., 2003), the acceptable and significant GQSAR 
model is determined when: r2> 0.6, q2> 0.5, and 0.85≤ ݇ ≤ 1.15. 
Other statistical parameters used to evaluate the generated models 
include: N (number of compounds), F (Fisher’s test for statistical 
significance), r2 (coefficient of determination), q2 (cross-validated 
r2 by leave-one-out method), pred-r2 (squared correlation 
coefficient of external validation of the test set), RSM (root mean 
squared error), k (slope of regression line), σ (standard error), Z-
scores (Z-score value of randomization test), best r and (highest r2 
and q2 values of the randomization test), α-rand- (the tabular value 
of statistical significance of Z-scores randomization test), and K 
(number of descriptors.).  
 
RESULTS AND DISCUSSION 
 

GQSAR modeling 
Training and test set selection 

Fifty compounds satisfied the filtration criteria (MW 
<500 Da) and were used for fragment-based descriptor calculation. 
After removing invariable descriptors, a pool of 317 two-
dimensional molecular descriptors remained and their contribution 
to activity variation was evaluated. Sphere exclusion algorithms 
with a dissimilarity value of +0.5 resulted in a reasonable rational 
division of the data into a training set (n=40) and test set (n=10). 
The calculated unicolumn statistics of both sets (Table 1) show 
that activity was evenly distributed within both tests and the 
selected sets fulfilled the main characteristics of valid data 
selection (Scior et al., 2009). Two GQSAR models were generated 
and validated based on the selected sets as discussed below.  
 
Table. 1: Statistical parameters of activity distribution within the selected 
training and test sets. 
 N Average Max Min SD Sum 
Training set 40 2.7920 5.1550 0.4210 1.4327 111.6810 
Test set 10 3.4397 4.1140 0.7080 1.0709 30.9570 

Sphere exclusion algorithm was applied to divide the data into training and test 
sets using a dissimilarity value of +0.5. 
 
Statistical evaluation and validation of the developed GQSAR 
models 
Model A 

The model was generated by simulated annealing 
algorithms followed by multiple linear regression using forty 
compounds as the training set and nine compounds as the test set 
(one compound from the original test set, n=10, was excluded to 
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improve the model). The statistical parameters of model A are 
shown in Table 2. The regression equation of the developed model 
A explains ~92.71% (r2=0.9271) of the total variance in the 
training set and has an internal and external predictive ability of 
approximately 87% (q2=0.8782) and approximately 90% 
(pred_r2=0.9061), respectively. From the plot (Figure 1A), it can 
be seen that the model was able to predict activity similar to the 
actual activity with relatively small-calculated residuals and a low 
RMS value of 0.3915.      
 
Table. 2: Statistical parameters for the developed GQSAR models of P70S6K 
inhibitors. 
 Model A 

(SA/MLR) Model B (STP/MLR) 

N (training/test) 40/9 40/9 
Degree of freedom 31 31 
F-test 49.2570 28.0084 
r2 0.9271 0.8785 
q2 0.7282 0.6109 
pred-r2 0.8707 0.8900 
RSM 0.3915 0.4771 
k 0.9432 0.8888 
r2- 0.5602 0.4340 ࣌ 
q2-1.0024 0.8379 ࣌ 
pred-r2- 0.4219 0.4574 ࣌ 
Z-score-q2 3.6620 2.7425 
Z-score-r2 6.20085 10.06522 
Best-rand-r2 0.48751 0.26731 
Best-rand-q2 0.1185 0.0670 
α-rand-r2 <0.00001 <0.00001 
α-rand-q2 <0.001 <0.01 
K(number of components) 8 8 

Model A was generated using a multiple linear regression method coupled with 
a simulated annealing algorithm. 
Model B was generated using a multiple linear regression method coupled with 
a stepwise regression algorithm by forward backward elimination.  
N: number of compounds, F: Fisher’s test for statistical significance, r2: 
coefficient of determination, q2: cross-validated r2 by leave-one-out, pred- r2: 
squared correlation coefficient of external validation of the test set, RSM: root 
mean squared error, k: slope of regression line, ߪ: standard error, Z-scores: Z-
score value of randomization test, Best-rand-: highest r2 and q2 values of the 
randomization test, α-rand- r2: α-rand-cv: statistical significance of Z-scores 
randomization test, K: number of descriptors. 
 
Model B 

Stepwise regression using forward-backward elimination 
coupled with multiple linear regression resulted in model B with a 
significant predictive ability of approximately 87% (r2=0.8785). 
Cross-validation using the leave-one-out method showed a 
significant internal stability of approximately 61% (q2=0.6109). 
External validation of the test set displayed pred_r2=0.8534. All 
statistical parameters of the developed model are shown in Table 
2. Plotting the actual pIC values against the predicted ones from 
model B displays how well the model predicts the activity because 
the majority of the points are close to the regression line (Figure 
1B). 

Compared with the calculated parameters of the previous 
model, it can be presumed that variable selection by simulated 
annealing (model A) was capable of developing a more robust and 
predictive GQSAR model than stepwise regression (model B) in 
terms of r2, q2, and pred-r2. However, both models have 
statistically significant robustness and predictive power, and 

therefore can be used to explain the structural requirements for 
P70S6K inhibition and to construct a library of potential P70S6K 
inhibitors.  
 

 
Fig. 1A,B: Regression plots of the generated GQSAR models for p70S6K 
inhibitors. Activity is expressed as the negative logarithm of IC50. (A) Fitness 
plot of model A that was generated by simulated annealing algorithms coupled 
with multiple linear regression, where the squared correlation coefficient r2= 
0.9487 and the slope of regression line k= 0.9468. (B) Fitness plot of model B 
that was generated by stepwise regression coupled with multiple linear 
regression, where the squared correlation coefficient r2= 0.9336 and the slope 
of regression line k=0.9361.  
 
Definition of important 2D molecular descriptors found in the 
GQSAR models 

A pool of 465 two-dimensional fragment-based 
molecular descriptors was calculated. The descriptors                        
that are constant for all molecules do not contribute to                 
GQSAR models and therefore were removed. Finally, a                
total 316 variable descriptors were used to build the models. As 
shown in Table 3, each developed GQSAR model has eight 
descriptors in the regression equation. These descriptors              
include atom-type count, atom-type E-state indices, 
electrotopological state indices, chromatographic descriptors, 
partition coefficient, and topological descriptors (molecular sub-
graph descriptors).  
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Element count descriptors 

Element count or atomic descriptors represent the total 
number of atoms A from the same type. They depend on atomic 
properties such as atomic number (Z), atomic mass, atomic 
charges, and the van der Waals radius (rw). They are zero 
dimensional descriptors (0D-molecular descriptor) and describe 
the general molecular structure of the molecule/fragment. Atom-
type molecular descriptors give global information on the 
contribution of each atom type in activity and physicochemical 
properties (Consonni and Todeschini, 2010). 
 
E-state indices 

Table 3 shows that GQSAR models are involved two 
types of E-state indices descriptors in activity variation among the 
data set, including E-state contribution (electrotopological state 
indices) (Kier and Hall, 1990, Kier and Hall, 1997) and E-state 
number (atom-type E-state indices) (Hall and Kier, 1995, Hall et 
al., 1995).    

E-state contribution indices (Si) of the atom ithin the 
molecule/fragmentprovide information on the electronic (intrinsic) 
and topological states of the atom and can be calculated using 
equation (7) (Kier and Hall, 1997): 

௜ܵ = ௜ܫ +  ௜                                                                     (7)ܫ∆
Where Ii is the intrinsic state of the atom ithand ΔIiis the 
perturbation of the intrinsic state of the atom ith due to the 
interaction with another atom in the molecule.  
The intrinsic state (Ii) of the atom ithis related to the number of 
valence electrons (non-σ electrons) and σ-bonded electrons and 
thus provides information on the availability of valence electrons 
(π and lone pair electrons) for ligand-target interactions. The 
intrinsic state of the ithatom in an H-depleted molecular graph in 
the molecule/fragment can be identified using equation (8) (Kier 
and Hall, 1997): 

௜ܫ =
௩ߜ + 1
ߜ

                                                                        (8) 
Where δv and δ values are the number of valence                      
electrons   and   sigma   electrons   on   the  atom ith, respectively.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
The topological state gives information on the effects of all atoms 
in the molecule/fragment on the intrinsic state of each atom, and is 
mainly related to the electronegativity and topological distance 
descriptors, as shown in equation (9) (Kier and Hall, 1997): 

௜ܫ∆ = ෍
௜ܫ − ௝ܫ
௜௝ଶݎ

ே

௝ୀଵ

                                                                (9) 

Where ΔIiis the perturbation of the intrinsic state of the atom ith 
due to the interaction with the atom jth in the molecule/fragment. 
Iiand Ijare the intrinsic state values of the atoms i and j, 
respectively. The rij value is the count of atoms in the shortest 
molecular path between the atoms i and j.  

E-state number descriptors are the total number of a 
specific type of atoms having the same atomic number (Z), 
valence state (δv, δ), and bonding type. The value of the E-state 
number can be defined as the summation of the electrotopological 
state values of all atoms of the same type in the molecule/fragment 
(Hall and Kier, 1995, Hall et al., 1995, Todeschini and Consonni, 
2000). 
 
Lipophilicity-related descriptors  
Partition coefficient (LogP) 

The logarithm of octanol-water partition coefficient 
(LogPow) has been known as the most important quantitative 
representation of the lipophilicity/hydrophobicity properties of a 
molecule and can be defined using equation (10) (Patrick, 2001):  

 

݃݋ܮ ௢ܲ/௪ = ݃݋݈
݈݋݊ܽݐܿ݋ ݊݅ ݊݋݅ݐܽݎݐ݊݁ܿ݊݋ܿ ݃ݑݎ݀ (݁ݏℎܽ݌ ܿ݅݊ܽ݃ݎ݋) 
(݁ݏℎܽ݌ ݏݑ݋݁ݑݍܽ) ݎ݁ݐܽݓ ݊݅ ݊݋݅ݐܽݎݐ݊݁ܿ݊݋ܿ ݃ݑݎ݀

  10 

 
Chromatographic descriptors 

Chromatographic descriptors are closely related to the 
lipophilicity descriptor and octanol/water partition coefficient 
(LogP). They are obtained by various chromatographic techniques 
and can be described using different descriptors. The capacity 
factor (k) is the quantitative representation of the retention index of 
a substance in HPLC column and can be defined using equation 
(11). The retention indices obtained from TLC and paper 

Table. 3: Definition of important 2D descriptors found in GQSAR models for P70S6K inhibitors. 
Descriptor Sub-class Definition 
E-state indices 
Nitrogen count Atom type descriptors The total number of nitrogen atoms 
Sulfur count Atom type descriptors The total number of sulfur atoms 
E-state indices 
SaaaCE-index E-state contributions The electrotopological state indices for number of carbon atoms connected with three aromatic bonds 
SddssS (sulfate) E-
index 

E-state contributions The electrotopological state indices for number of sulfate groups connected with two single bonds and 
two double bonds 

SsssNE-index E-state contributions The electrotopological state indices for the number of nitrogen atoms connected with three single bonds 
SaaN count E-state numbers The total number of nitrogens connected with two aromatic bonds 
SdssC count E-state numbers The total number of carbon atoms connected with one double and two single bonds 
SssNH count E-state numbers The total number of –NH groups connected with two single bonds 
SsssN count E-state numbers The total number of nitrogens connected with three single bonds. 

Lipophilicity-related descriptors 
chi3 chain Chromatographic descriptors The retention index for three-membered ring 
slogp  log of the octanol/water partition coefficient 
Molecular graph 
5 chain count Molecular sub-graph (chain 

count) 
The total number of five-membered rings 
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chromatography are described by Bate-Smith-Westall retention 
index (RM) as shown in equation (12) (Todeschini and Consonni, 
2000).  

݇݃݋ܮ =
ோݐ − ெݐ
ெݐ

                                                                    (11) 

Where tRand tMare the retention times of the solute and the un-
retained solute, respectively.  

ܴெ = log ቆ
1

௙ܴ
− 1ቇ                                                                 (12) 

Where Rf is the ratio of a distance passed by the solute to that of 
the solvent front. 
 
Molecular graph descriptors 

An H-depleted molecular graph (G)is a topological 
descriptor of a molecule/fragment where all chemical atoms and 
covalent bonds are presented as vertices (V) and edges (E), 
excluding all hydrogen atoms. The path is a walk within the 
molecular graphfrom one vertex to another without any repeated 
vertices and the number of the E encountered within the path is 
called the path length (Consonni and Todeschini, 2010). A group 
of atoms and a bonding system within G constitutes a molecular 
sub-graph which can be classified into: path (vertex degree equals 
to 2 or 1; each atom is adjacent to 2 or 1 atom), cluster (vertex 
degree is greater than 2 or equal to 1), path-cluster (other vertex 
degree values), and chain (cyclic sub-graphs) (Todeschini and 
Consonni, 2000).  
 
Percentage contributions of the fragment-based descriptors by 
GQSAR models and their interpretation   
Model A 

The generated model indicates that structural 
modifications on fragment R3 are critical for producing potent 
P70S6K inhibitors because fragment R3-based descriptors 
contribute approximately 63.81% of activity variation and 
fragment R1 (~26.47%) and fragment R2 (~9.72%) have lower 
contributions. The percentage contribution of fragment-based 
descriptors is presented in Figure 2A.  As a negative contributor at 
fragment R1, the electrotopological state indices of the sulfate 
group connected to two double bonds and two single bonds [R1-
SddssS(sulfate)E-index] are detrimental to activity and contribute 
approximately -16.73% of activity variation. Consequently, to 
produce potent P70S6K inhibitors, the thiomorpholine-1,1-dione 
ring at R1 in LIG3 and LIG66 should be replaced by 
thiomorphine, which has two sigma-bonded electrons and a lower 
Sivalue. It was determined that nitrogen atoms in fragment R1 are 
unfavorable for inhibition because the descriptor (R1-Nitrogen 
count) was shown to negatively contribute to the inhibitory 
activity by approximately -4.20%. For example, LIG3 contains 
three nitrogen atoms in fragment R1 due to the presence of an 
indole ring and propylsulfanyl(methanimidamide), which are 
suggested to be replaced by non-containing structures such as an 
indene ring and 1-(methylsulfanyl)propane, respectively. On the 
other hand, the descriptor (R1-chi3 chain) is directly proportional 
to activity and contributes approximately 5.55% of activity 

variation within the dataset, indicating that increasing the retention 
index value of three-membered rings at fragment R1 could be 
conducive for activity as in LIG27. Consequently, a cyclopropane 
ring is more preferable for inhibition than its nitrogen-containing 
counterpart, aziridine.  In fragment R2, the E-state contribution of 
nitrogen atoms of sp3 hybridization (connected with three single 
bonds) is inversely proportional to activity (~-9.72%), indicating 
that better inhibition requires a lower value of the R2-SsssNE-
index descriptor. For instance, the value of R2-SsssNE-index 
descriptor in LIG53 could be reduced by using a pyrrolidine ring 
instead of 2,5-dihydro-1H-pyrrol-2,5-dione at fragment R2.  The 
total number of five-membered rings (R3-5 chain count) and the 
E-state contribution of carbon atoms connected to three aromatic 
bonds (R3-SaaaCE-index) at fragment R3 were directly 
proportional to activity and contributed approximately 15.24% and 
11.32% of activity variation, respectively. Thus, replacing indole 
by benzofuran at fragment R3 in LIG3 is thought to increase 
inhibition. In contrast, the total number of sp2-hybridized carbon 
atoms (R3-SdssCcount) and the E-state indices of sp3-hybridized 
nitrogen atoms (R3-SsssNE-index) were shown to be deleterious 
to inhibitory activity with a percentage contribution of 
approximately -33.37% and -3.88%, respectively. This indicates 
that the urea group in LIG57-65 is unfavorable and might be one 
of the reasons for its low activity (pIC ranged from 1.284 to 
0.421).  
 
Model B 

The model confined activity variation to eight molecular 
descriptors with a sound effect of fragment R2-based descriptors 
that contribute about approximately 62.141% of the inhibitory 
activity variation. Fragment R1 and R2 are contribute almost 
equally, approximately 18.13% and 19.17%, respectively. The 
percentage contribution of fragment-based descriptors found in 
model B is presented in Figure 2B.  Consistent with the previous 
model, it was found that R1-chi3 chain and R1-sulfur count are 
directly proportional to activity and contribute approximately 
5.40% and 12.75%, respectively. Therefore, to design potent 
P70S6K inhibitors, it is recommended to increase the total number 
of sulfur atoms and the retention index value of three-membered 
rings by using cyclopropane-containing thioether and thioester 
derivatives at fragment R1.  In fragment R2, two negatively 
contributing descriptors were found. First, the E-state indices of 
carbon atoms connected to three aromatic bonds contribute 
approximately -14.72% of activity variation. For example, 
decreasing the value of the electrotopological state indices of the 
bridgehead atoms of the indazole ring at R2 in LIG34 would result 
in better inhibition. Second, the total number of nitrogen atoms 
connected to three single bonds was found to inhibit activity (~-
5.00%), suggesting that replacing the 2,5-dihydro-1H-pyrrol-2,5-
dione in LIG53 by cyclopent-4-ene-1,3-dione is favorable for 
activity. Model B suggests that the majority of the R3-based 
descriptors are related to nitrogen atoms. It was found that 
secondary amines (R3-SssNHcount) and tertiary amines (R3-
SsssNcount) are adversely correlated to activity, explaining 
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approximately -31.10% and -12.53% of pIC value variation within 
the dataset. In contrast, aromatic nitrogen atoms (R3-SaaNcount) 
are conducive to inhibitory activity (~5.67%). Consequently, 
indazole (LIG27), quinazoline, quinoxaline, and benzotriazine are 
highly recommended for better inhibition. The SlogP (~-12.48%) 
of fragment R3 suggests that hydrophobic interactions are not 
favorable for inhibition and more effective inhibitors should 
contain a less hydrophobic Fragment R3.    
 

 
Fig. 2A,B: Percentage contribution of important 2D descriptors found in the 
GQSAR models for P70S6K inhibitors. (A) Contributing descriptors according 
to model A. (B) Contributing descriptors according to model B. Descriptor 
definitions can be found in Table 2. 
 

Importantly, the current GQSAR results, and the 
interpreted assumptions, are in good agreement with previous 
reports on SARs of P70S6K inhibitors. Models A and B stated that 
fragment R1 and R2 are less important for inhibitory activity 
(Figure 3) with unfavorable roles for the nitrogen-containing 
structures at R2, suggesting that the role of these fragments in 
inhibitory activity might be different from hydrogen bonding or a 
direct interaction with the kinase hinge. Ye and colleagues 
reported that substituents at C3 of the thiophene ring 
(corresponding to fragment R1) take part in drug solvation with no 
interaction with the binding pocket. In addition, tert-Butanol (tBu) 
at C5 of the thiophene ring (fragment R2) is essential for 
hydrophobic interactions with P70S6K (Ye et al., 2011). On the 

other hand, the majority of activity variation was confined to 
fragment R3 in both GQSAR models. The models revealed that (i) 
nitrogen-based aromatic rings are more preferable than their non-
aromatic or non-nitrogen-containing counterparts and (ii) 
hydrophobic interactions with R3 are not recommended. Bussenius 
et al. highlighted that pyrozolopyrimidine-containing derivatives 
are potent inhibitors having IC50 ranging from 107-13 nM. They 
proposed that -NH at the pyrazole ring and N7 at the pyrimidine 
moiety (corresponding to fragment R3 in the GQSAR model) form 
hydrogen bonds with Glu173 and Leu175 of the hinge region, 
respectively (Bussenius et al., 2012). Moreover, it was proposed 
that an indazole ring linked to thiophene-urea (fragment R3) 
resulted in stronger binding to the hinge compared to 
heteroaryl/aryl ether (Ye et al., 2011). 
 

 
Fig. 3: Percentage contribution of fragments R1, R2, and R3 on GQSAR 
models.  
 
CONCLUSION 
 

To the best of our knowledge, this is the first study on the 
structural requirements for P70S6K inhibitors using the GQSAR 
approach. The current study explored the global chemical space of 
P70S6K datasets and used a wide range of structurally diverse 
scaffolds to generate GQSAR models with significant and robust 
predictive power.  The generated models describe the role of each 
molecular fragment in ligand-target bio-interactions. It was found 
that fragment R3 has a key role in governing the inhibitory activity 
of the molecule by the formation of hydrogen bonds with the 
kinase hinge via aromatic nitrogen-containing structures. In 
contrast, nitrogen atoms and aromaticity are not preferred at R2, 
which is expected to form hydrophobic interactions with the 
binding pocket. The retention index of the cyclopropane ring at R1 
is favourable, suggesting an important role of R1 in solvation. In 
summary, the present investigation indicates the principal 
requirements for designing innovative and powerful P70S6K 
inhibitors.  
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