Dillenia indica Linn. and Dillenia pentagyna Roxb.: Pharmacognostic, Phytochemical and Therapeutic aspects

Dipal Gandhi¹ and Priti Mehta²

¹Department of Pharmacognosy & ²Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, Ahmedabad- 382 481, Gujarat, India.

INTRODUCTION

Medicinal plants have provided copious leads to combat diseases, from the dawn of civilization. India is one of the world’s 12 biodiversity centers with the presence of over 45000 different plant species (Jawla et al., 2009). Traditional systems of medicine continue to be widely practiced on many accounts. Many of these plants are rare and endemic and found only in forest region. There is neither biological information nor adequate knowledge that led to their rarity in the habitat (Kerrigan et al., 2011). Creation of a network of regional and sub-regional ethno-medical plant gardens which should contain accessions of all the medicinal plants known to the various ethnic communities in different regions of India.

There are many plant species which has been used by tribal and folk communities of various forest regions of India but their pharmacognostical as well as phytopharmacological importance is yet unknown as these plants are rarely available. Amongst these plants there are few plants belonging to family Dilleniaceae which is not much known but having very good medicinal value. The genus Dillenia has 60 species, of which

Dillenia indica, Dillenia pentagyna, Dillenia alata, Dillenia suffruticosa, Dillenia papuana, Dillenia excelsa, Dillenia serrata, Dillenia ovata, Dillenia philipinensis etc. which are found to have good medicinal value, there are only two plants Dillenia indica Linn. (D. indica) and Dillenia pentagyna Roxb. (D. pentagyna) which is available in India (Dickison, 1979). The leaf, bark, and fruit of these plants are used as traditional medicine is having good therapeutic values.

These plants are being used by tribal and folk communities of various regions, fruits of Dillenia indica as well as D. pentagyna also eaten raw but not very much well known by people (Dubey et al., 2009; Pradhan & Badola, 2008; Sharma & Pegu, 2011). The present review includes detailed pharmacognostical description, phytochemical investigations and therapeutic importance of these plants. These plants may have very good medicinal potential which can be further explored for preparation of formulations.

VERNACULAR NAMES

In addition to scientific names, D. indica and D. pentagyna also have multiple common (local) names (Nadkarni & Nadkarni, 1954; Shah, 1978; Khanum et al., 2007; Khare, 2007; Rastogi et al., 2001) shown in Table 1.
Table 1: Vernacular names of Dillenia indica and Dillenia pentagyna.

<table>
<thead>
<tr>
<th>Language</th>
<th>Dillenia indica</th>
<th>Dillenia pentagyna</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Elephant apple</td>
<td>Dog Teak</td>
</tr>
<tr>
<td>Sanskrit</td>
<td>Bhavya, ruyya</td>
<td>--</td>
</tr>
<tr>
<td>Hindi</td>
<td>Chalta, girmar</td>
<td>Aggai, Kallai</td>
</tr>
<tr>
<td>Gujarati &</td>
<td>Karmbel, Mota Karmal, Mota</td>
<td>Karmal</td>
</tr>
<tr>
<td>Marathi</td>
<td>Karambal</td>
<td>--</td>
</tr>
<tr>
<td>Bengali</td>
<td>Chalta, Hargesa</td>
<td>Korkotta</td>
</tr>
<tr>
<td>Assam</td>
<td>Chalita, Outenga</td>
<td>Akshi</td>
</tr>
<tr>
<td>Uriya</td>
<td>Uvu, Chalota, Ou, Rai</td>
<td>Rai</td>
</tr>
<tr>
<td>Nepali</td>
<td>Ramphal, Panchphal, Panchkule</td>
<td>Tatri</td>
</tr>
<tr>
<td>Telugu</td>
<td>Peddakalinga</td>
<td>Chimakalinga, Ravaduna</td>
</tr>
<tr>
<td>Tamil</td>
<td>Akku, Ugakkay, uva, uvu, uvattek</td>
<td>Naytekku</td>
</tr>
<tr>
<td>Kannada</td>
<td>Betta Kanigala, Kondukanagala</td>
<td>Kanigala, Kadu-</td>
</tr>
<tr>
<td>Malayalam</td>
<td>Chalitha, Punna, Syalitha, valapunna</td>
<td>Punna, Kodapunna</td>
</tr>
<tr>
<td>Konkani</td>
<td>Corombol</td>
<td>--</td>
</tr>
<tr>
<td>Burma</td>
<td>Thabyu, thubuta, Zinbrun,</td>
<td>--</td>
</tr>
<tr>
<td>Monghyr</td>
<td>Chalta</td>
<td>--</td>
</tr>
<tr>
<td>Trade</td>
<td>--</td>
<td>Dillenia</td>
</tr>
</tbody>
</table>

TAXONOMICAL CLASSIFICATION

According to the botanical scheme of Engler, the plant is classified as follows (Metcalfe & Chalk, 1983):

Kingdom: Plantae
Division: Phanerogamae
Subdivision: Angiospermae
Class: Dicotyledonae
Subclass: Polypetalae
Order: Dilleniaceae
Family: Dilleniaceae
Genus: Dillenia
Species: indica Linnaeus or speciosa Thunberg or pentagyna Roxburgh or hainanensis Merrill

PHARMACOGNOSTICAL DESCRIPTION

Morphologically bark, leaves and fruits of D. pentagyna and D. indica are having major distinguishing characters.

Dillenia indica Linnaeus

Synonym: Dillenia speciosa Thunberg

Medium sized evergreen trees up to 30 m tall, ca. 1.2 m d.b.h., trunk is straight but not much high, branches are spreading and forming round-shady head (Figure 1a). Bark is reddish brown in colour, exfoliating; young branchlets is brown pubescent, glabrescent and contains leaf scars (Figure 1b). Leaves are fasciculate at the ends of branches; veins are close, running into serratures, not forking at the margins, upper surface and nerves beneath are more or less pubescent; petiole is narrowly winged, 2.5-5 cm long, channeled, sheathing; leaf blade oblong or obovate-oblong, 15–40 x 7–14 cm, secondary veins (20–)30–40(–70) on either side, parallel, margin serrate, apex is acute (Figure 1c). Flowers are solitary, 12–20 cm in diameter, bud is more than 5 cm in diameter. Sepals are 5 in number, approximately rounded, orbicular, concave, 4–6 cm in diameter, thickly and fleshy. Petals are 7-9 cm in size, white, obovate. Stamens in 2 distinct groups, outer very numerous, slightly curved in bud, inner ca. 25, apically reflexed outward in bud; anthers dehiscing with 2 pores. Carpels are 16–20 in number; stylodia spreading; ovules many per carpel. Flowers occur in May-June. Fruits are aggregate and globose, 10–15 cm in diameter, indehiscent, persistent sepals, fleshy, slightly swollen. Fruiting in July-August and ripens in November-December. The fruit of this species is edible (Figure 1c, 1d). Seed contains 5 or more per carpel, exarillate, imbedded in glutinous pulp, compressed, with hairy margins (Kirtikar, Basu, 1999; 1984).

Fig. 1a: Dillenia indica Linn. Tree;

Fig. 1b: Dillenia indica Linn. Bark.
Dillenia pentagyna Roxburgh

Synonym: Dillenia hainanensis Merrill

It is deciduous trees up to 15 m tall and 1 m d.b.h (Figure 2a). Bark is grayish in colour, smooth, exfoliating; branchlets glabrous, stout (Figure 2b).

Leaves are petiolate 2–5 cm, glabrous, with narrow wings; shape is oblong to obovate-oblong, 20–60 × 10–25 cm in size, leathery surface, secondary veins 25–50 on either side, showing parallel margin with shallowly undulate teeth, apex obtuse to subacute (Figure 2c).

Flower are 2–7 in number, small, fascicled at top of lateral spurs, 2–3 cm in diameter, less than 2 cm in diameter in bud; pedicels 2–4 cm, bractlet is deciduous. Total 5 sepals and petals, yellow coloured and obovate. Stamens are in 2 distinct groups, outer 60–90, 3–4 mm, slightly curved in bud, inner ca. 10, reflexed, 6–9 mm; anthers dehiscing with longitudinal slits. Carpels are 5 or 6, 3.5–4 mm in diameter; stylodia spreading containing 5-20 ovules per carpel. Pseudocarp is indehiscent, yellow/orange/red in colour. Flowering starts in April-May. Fruits are globose in shape, 0.5–1 cm in diameter, indehiscent, greenish when fresh (Figure 2d).

OCCURRENCE AND DISTRIBUTION

D. indica and *D. pentagyna* are widely distributed in many Asian countries. *D. indica* distributed in valleys, stream, streamside, Bhutan, India, Indonesia, Laos, Malaysia, Myanmar, Nepal, Philippines, Sri Lanka, Thailand, Vietnam. In India, distributed in sub Himalayan tract, Assam, North Bengal, Bihar, Orissa, Madhya Pradesh, Gujarat (Khanum & Khan, 2007; Khare, 2007). *D. pentagyna* is distributed in rain forests, thickets, hills; below 400 m. Hainan, Yunnan in Bhutan, India, Indonesia, Malaysia, Myanmar, Nepal, Thailand, Vietnam. In India, distributed in Himalayan terrain, also from Punjab to Assam, South India, Andamans, Gujarat, Mizoram and West Bengal (Khanum & Khan, 2007; Khare, 2007).

CHEMICAL CONSTITUENTS

From literature survey it is revealed that different parts of these plants contain many primary and secondary metabolites. *D. indica* and *D. pentagyna* are rich source of triterpenoids, flavonoids, tannins and various other phytoconstituents.

Stem bark of *D. indica* contains 10% tannin, dillenetin (Figure 3), betnaldehyde, betulinic acid (Figure 4), flavonoids like rhamnetin, dihydro-isorhamnetin, lupeol, myricetin, naringenin, quercetin derivatives and kaempferol glucoside (Shah, 1978; Khanum & Khan, 2007; Khare, 2007). The ethanol extract of stem bark afforded two flavonoids viz., kaempferol glucoside and quercetin derivative as well as a triterpenoids (Srivastava & Pande, 1981). Parvin et al reported methanolic extract of stem after partitioning with n-hexane yielded four compounds lupeol, betnaldehyde, betulinic acid and stigmasterol using column chromatographic separation (Parvin et al., 2009).

Apart from this it has been observed that leaves of twelve species of Dilleniaceae family contain betulin, betulinic acid, lupeol and β-sitosterol (Dan & Dan, 1980). Leaves of *D. indica* found to contain flavonoids, triterpenoids, steroids, tannins; its petroleum ether extract afforded cycloartenone, n-hentriacontanol, sitosterol, betulin; chloroform extract contains betulinic acid (Mukherjee, 1981). Methanolic extract of leaves after fractionation with n-hexane and chloroform also yielded compounds like betulinic acid, β-sitosterol, stigmasterol as well as dillenetin (Md. Muhit el al., 2010). Further phytochemical studies has been performed on acid hydrolyzed extracts of dried leaves which...
showed presence of kaempferol; while fresh leaves contain dihydrokaempferide and 7-glucocones of naringenin which get oxidized to ten corresponding flavonols (Bate-smith & Harborne, 1975). Kumar et al isolated and quantified betulenic acid using validated HPLC method from different fractions like methanol, ethyl acetate, n-butanol and water. Amongst which highest concentration was found in ethyl acetate fraction (97.9977.61 mg/g of fraction) (Kumar et al., 2010).

Fruit of D. indica also contain about 34% of total phenolics in methanolic extract (Md. Abdille et al., 2005) and polysaccharide like an arabinogalactan. Uppalapati reported presence of fixed oil, colouring matter, sterols, glycosides, saponins, proteins, free amino acids, sugars, free acids and tannins in the seeds (Uppalapati & Rao, 1980).

![Fig. 5: Structure of Dipoloaic acid.](image)

Another species belonging to family Dilleniaceae, D. pentagyna reported to contain 6% of tannins, its stems are found to contain naringenin-41-O-b-D-xylpyranoside, flavonoid glycosides, naringenin 7-galactosyl glucoside and dihydroquercetin 5-galactoside along with rhamnetin-3-glucoside (Uppalapati & Rao, 1980), diterpene namely dipoloaic acid (Figure 5) from the methanolic extract (Srivastava et al., 1984), saponin namely alpha- L-rhamnopyranosyl-3-beta-hydroxyl-lup20(29)-en-28-oic acid (Tiwari et al., 1980). Stem bark contains flavonoids like kaempferol, quercetin, isorhamnatin, naringenin-7 galactosyl (1-4) glucoside and rhamnetin-3-glucoside; terpenoids like lupeol, betulaldehyde, betulin, betulinic acid, mallic acid, β-sitosteryl, stigmasteryl; and phenolics (Khanum et al., 2007; Khare, 2007).

From the above compiled information it is concluded that betulin, betulinic acid and β-sitosteryl is present in almost all parts of D. indica as well as D. pentagyna. Many research works has been done on the isolation, separation and quantification of the various phytoconstituents from different parts of D. indica but very few phytochemical investigations has been done from D. pentagyna.

THERAPEUTIC IMPORTANCE AND USES

These plants are found to have very good therapeutic values in various different diseases. Different parts are used traditionally and pharmacologically to cure ailments and diseases. Traditionally, whole plant of D. indica used in case of fever, as an aphrodisiac and also promotes virility; decoction of it can be used as an universal antidote (Panda, 2009; Nadkarni et al., 1954; Shah, 1978; Khanum, 2007).

Its roots as prophylactic in the cholera season, an ingredient of a medicine for burning sensation in the chest, root bark extract cures food poisoning; paste of root-bark along with leaf paste applied externally in sprains; young bark and leaf as an astringent; decoction of D. pentagyna is given in case of body pain twice daily till cure (Khanum, 2007).

Stem-bark of D. indica serve as component of medicine for sores caused by mercury poisoning, chronic progredient sores and carbuncle as and prophylactic in the cholera season. Stem extract applied on and around the wound caused by spider bite helps to remove the poison. D. pentagyna bark powder is given with water for curing diabetes, also in diarrhea and dysentery. Sugar is mixed with bark powder and given to women for easy delivery and also applied externally to check infection. Bark paste is applied on head once a week for hair growth (Panda, 2009; Nadkarni et al., 1954; Shah GL, 1978; Khanum A et al., 2007; Janick J & Paul RS, 2008). 3 inches of stem bark of D. pentagyna is crushed with sufficient quantity of salt and the extract is administered orally daily once for three days in treatments of cut and burns (Khanum et al., 2007).

Pradhan and Badola reported use of 118 medicinal plants species, belonging to 71 families and 108 genera found in Lepcha tribe of Dzongu valley, in North Sikkim, India. They have mentioned that leaves and fruit of D. indica are used for diseases like fever, constipation, dysentery and in treatment of stomachache (Pradhan & Badola, 2008).

Leave of D. indica are used as an astringent, antiampetamine, while of D.pentagyna in case of cut and wounds. Different leaf preparations are used for treatments; like paste is applied on bone fracture, poultice is used in bleeding piles, decoction is used in skin disease and body pain; powder is given in treatment of breast cancer (Janick & Paul, 2008; Anisuzzaman et al., 2007).

The fruits of D. indica are said to be relished by elephant and hence named as ‘Elephant Apple’. The green fruit (unripe) is acidic, sour, bitter, pungent, astringent, removes bile, phlegm, fetid and flatulence, cardiotonic, but the ripe fruit is sweet, sour, appetizing, tasty; removes ‘vata’ and ‘kapha’: dispels fatigue; stops abdominal pains (ayurveda), laxative, beneficial in colic associated with mucus, is apt to induce diarrhea if too freely indulged in (Nadkarni et al., 1954; Khare, 2007). Fruit decoction used for curing dandruff and checking falling of hairs, eaten to combat weakness; as tonic. Ripe fruits are eaten fresh as well as cooked, which contains 0.9% total soluble solids; juice, mixed with sugar and water, serves as a cooling beverage in fever, fit, and as a cough syrup; ripe fruit-juice removes flatulence, increases quantity of semen, galactagogue, external application helps supuration of boil, thickened and fleshly calyx on fruits used as a flavoring agent, or made into jams and jellies (Rastogi et al., 2000).

The seed of D. indica is covered by fleshy proteinacious aril which is used in curry, pickle and jelly preparations. Seed, seed oil and its unsaponifiable matter is having antimicrobial, antifungal and antibacterial property, respectively. It is widely used for garnish in indigenous ayurvedic medicine for
nervousness. Mucilage is applied on wounds of burns (Janick & Paull, 2008).

PHARMACOLOGICAL IMPORTANCE OF DIFFERENT PARTS OF PLANTS

Pharmacologically, it has been reported that *D. indica* shows activities like antileukemic, anti-inflammatory, antioxidant, antiproliferative, antidiabetic, antimicrobial, antifungal, antidiarrheal, cytotoxic, hepatoprotective and many more.

Antileukemic activity of the fruits of *D. indica* using different human leukemic cell lines U937, HL60 and K562 has been performed by Vedasrimoni *et al.* Fractionation of methanolic extract has been done with different solvents like ethyl acetate, n-butanol and water. Ethyl acetate fraction showed lower IC$_{50}$ value compared to methanolic which was also compared with betulinic acid (Bate-smith & Harborne, 1975).

Saowakhon *et al.* studied anti-proliferation activities of around 12 Thai Lanna medicinal plant recipes in cancer cell lines by SRB assay including *D. indica* which found more effective than doxorubicin compare to other medicinal plants. Anticancer potential of *D. indica* can be further explored for treatment (Saowakhon *et al.*, 2008).

Antidiabetic and hypolipidemic activities of bioactive fraction of *D. indica* methanolic extract (fractioned with ethyl acetate) was analysed in experimental diabetic Wistar rats. Type 1 and Type 2 diabetes was induced using streptozotocin and nicotinamide as a standard (Intraperitoneally) and treated by giving fraction orally. Blood glucose, serum cholesterol and triglycerides levels whereas HDL-C level was found to be increased (P<0.05) as compared with the diabetic control group (Kumar *et al.*, 2011c). Kumar *et al.* also performed antidiabetic, hypolipidemic histopathological analysis using methanolic extract of *D. indica* leaves in alloxan induced diabetic rat by administering oral doses. *D. indica* possess good antidiabetic property as well as improved body weight, liver profile, renal profile and total lipid levels. Methanol extract has favorable effect to inhibit the histopathological changes of the pancreas and kidney in alloxan induced diabetes (Kumar *et al.*, 2011a). Seeds of *D. indica* were taken to evaluate the hepatoprotective effect and safety evaluation of hexane extract against CCl$_4$ induced toxicity and its safety evaluation in wistar albino rats. The levels of AST, ALT, ALP, bilirubin, urea and creatinine levels were significantly increased but protein content was significantly decreased in CCl$_4$ induced liver damage rats. DNA damage of rat WBC caused by CCl$_4$ injection was considerably counteracted by treatment with the extract. The seed extract produced significant hepatoprotective effect by decreasing the activity of serum enzymes, bilirubin, urea, creatinine and lipid peroxidation and significantly increased the level of SOD, CAT, GPx, GR, GST, GSH, Vitamin C and E and protein (Reddy *et al.*, 2010).

Fruits of these plants are also analyzed for different pharmacological potential. The powder of fruits was extracted with ethyl acetate, methanol and water. The total phenolic content of the extracts was determined in different prepared extracts. Antioxidant capacity of the extracts was checked equivalent to ascorbic acid (µmol/g of the extract). Results obtained in order like methanol extract > ethyl acetate extract > water extract which also showed same result using β-carotene-linoleate model system, and DPPH (Md. Abdille *et al.*, 2010). Different extraction procedures were applied like sonication, soxhlet, and high-pressure extraction for preparation of extracts using leaves of *D. indica* and checked for antioxidant activity amongst which maximum activity was observed in extract prepared by sonication using carotene-bleaching assay. High pressure extraction method with circulation produced extracts that have total phenolic content higher than sonication and soxhlet extraction method (Arbianti *et al.*, 2007). Utami *et al.* studied about the antioxidant effect by increasing solvent pressure, extraction time, extraction temperature, and solvent flow rate by high pressure extraction. They have also checked content of total phenolics at different condition which could affect the measurement of antioxidant activity (Utami *et al.*, 2007). Bark of *D. indica* also found to contain around 54% of total phenolics which was analyzed for antioxidant capacity by phosphomolybdenum method, radical scavenging activity using α, α-diphenyl-β-picrylhydrazyl method, hydroxyl radical (·OH) scavenging activity by deoxyribose method, and superoxide anion (O2−) scavenging activity by phenazine methosulphate/NADHnitroblue tetrazolium system. Antioxidant capacity of the extract was found to be 3.12 mmoles/g as equivalent to ascorbic acid at 50 ppm concentration. At 25 ppm concentration, the radical scavenging activity of butylated hydroxyanisole and extract showed 90.9% and 91.0%, respectively. The ·OH scavenging activity of the extract was shown to be 53.9% at 100 ppm concentration. At a concentration of 50 µg, the O2− scavenging activity of the extract was 31.7% as compared to 47.7% by gallic acid (Deepa & Jena, 2011).

Parvin *et al.* used non-polar fractionation from methanol extract to check different antimicrobial activity, cytotoxicity and antioxidant activity. The extractives were also subjected to brine shrimp lethality bioassay. In the study, the crude methanolic extract and dichloromethane soluble fractions were found to be highly toxic to brine shrimp nauplii, with LC$_{50}$ of 8.92 µg/ml and 2.38 µg/ml, respectively. The crude methanol extract and its n-hexane, carbon tetrachloride and chloroform soluble fractions were screened against 13 test bacteria amongst which chloroform extract showed very weak activity. Antioxidant screening of the crude methanolic extract showed very strong free radical scavenging activity with IC$_{50}$ value of 4.58 µg/ml while other showed moderate (Parvin *et al.*, 2009).

Antimicrobial activity of fixed oil and unsaponifiable matter of *D. indica* was checked. It was reported that fixed oil does not exhibit any activity against most of test bacteria except Vibrio cholerae and mild antifungal activity, while unsaponifiable matter showed good activity. Acetone and alcoholic extracts of seeds of *D. indica* showed good antimicrobial activity while chloroform extract found to have mild activity (Uppalapati & Rao, 1980). The methanolic extract along with some organic soluble fractions of
the bark of *D. indica* were tested against four gram-positive and seven gram-negative bacteria and against three pathogenic fungi. n-Hexane and dichloromethane fractions showed remarkable activities against all the tested bacteria in which n-hexane fraction showed highest activity against *Shigella dysenteriae* (Alam et al., 2010). Gogoi et al. made efforts to characterize a bioactive molecule synthesized by endophyte Hypocrea spp. NSF-08; analyzed the impact and subsequent optimization of submerged culture conditions to facilitate improved production of the antimicrobial agent. The effect of various culture conditions, supplementary carbon, nitrogen sources and amino acid amendment on growth and antimicrobial agent production by the fungus was determined. The enhanced production of bioactive metabolite by the fungus has been observed by making amendments in various conditions (Gogoi et al., 2008).

The anti-inflammatory activities of the methanol extract of *D. indica* leaves were observed in various experimental models. In case of carrageenan-induced paw edema doses of 200 and 400 mg/kg of the extract significantly inhibited the percent increase in reaction time while acetic acid induced capillary permeability. All doses of extract and Indomethacin at a dose of 20 mg/kg showed a significant decrease in dye leaking in the peritoneal fluid. The methanolic extract of *D. indica* at 200 and 400 mg/kg showed a significant anti-inflammatory activity and the possible mechanism might be inhibition of mediator release and PG biosynthesis (Yeshwante et al., 2009). A glycolic extract of *D. indica* prepared from the mature fruits of the plant showed significant wound healing activity alone or in combination with microrcurrent stimulation to skin wounds surgically induced on the back of Wistar rats. It is mentioned that the result probably due to the efficacy of microrcurrent application since the extract alone did not significantly accelerate the healing process. *D. indica* fruit extract is most likely participates in the wound healing process as a result of its anti-inflammatory properties (Domenico et al., 2011).

Yeshwante et al. checked for the anti-diarrheal activity of the methanolic extract of *D. indica* leaves using castor oil induced diarrhea model and concluded that the inhibition of the diarrhea and prolongation of onset might be due to inhibition of inflammatory mediator release and phytocinstituents such as flavonoids and tannins may have also contributed to the anti-diarrheal activity (Yeshwante et al., 2009). Hydroethanolic extract of leaves of *D. indica* used to check for anxiolytic activity in various models of experimentally induced mice and showed significant result at dose of more than 200 mg/kg against Diazepam as a standard (Lahkar et al., 2011).

Pantoprazole loaded microbeads were prepared by ionotropic gelation technique using sodium alginate and natural mucadhesive substance from the fruit of *D. indica* followed by a coating with Eudragit L100-55 (Sharma et al., 2010).

Few research works has been performed on different parts of *D. pentagyna*. Rosangkima et al. taken total five plants for its antitumour activity against murine ascites Dalton’s lymphoma (DL) in vivo amongst which methanolic extract of stem bark *D. pentagyna* showed remarkable activity (Rosangkima & Prasad, 2004). Extract showed maximum survivability of Dalton’s lymphoma-bearing mice at dose of 20 mg/ml. It is also showed that treatment with the extract also showed decrease in sialic acid content in DL cells as well as decrease in degree of DL cell agglutination with concanavalin A and wheat germ agglutinin (Rosangkima et al., 2008). The another report is to measure level of glutathione and glutathione-related enzyme activities in host tissue which can found to have important contributing factor in *D. pentagyna* mediated antitumour activity in Dalton’s lymphoma bearing mice, decrease in level was observed (Rosangkima et al., 2008). The antibacterial and antifungal activity of the crude extracts as well as for the isolated pure compounds has been checked using fifteen bacterial strains, which included seven gram-positive and eight gram-negative organisms, and nine fungi. Studies on the antifungal activities showed that ethyl acetate extract and Grisofulvin have shown promising zone of inhibition against the fungi except *Candida albicans* and *Candida krusei*. Methanol extract showed no activity while ethyl acetate extract also exhibited toxicity towards brine shrimp (Md. Haque et al., 2008). In addition to therapeutic and pharmacological uses, these plants are also found to have few non-medicinal uses like green leaves used as feed for tusser silkworms, leaves of *D. pentagyna* as a green manure, dried leaves as substitute to sandpaper. Wood and timber has been used for house-posts, planks and rafters for internal work; also for preparing tool-handles, boats, cupboards and paneling. Bark yields fiber used for cordage. A Cot or bed is made from wood for sleeping to ward off the evil spirit and to know forth coming events (Dubey et al., 2009).

The tribal communities of Vindhya region, Madhya Pradesh, India worship tree of *D. pentagyna* on ‘Dipalvali’ festival day thinking it as Goddess Luxmi. A statue or picture of God or Goddess is placed on stool or stand prepared from its wood.

CONCLUSION

The extensive literature survey as well as reports on research revealed that *Dillenia indica* and *Dillenia pentagyna* are highly regarded to have good potential in the herbal medicine. Detailed pharmacognostical description will give an overview about the identification of these plants in the different forest regions throughout India, but microscopical investigation is yet remaining to be carried out for *D. pentagyna*. Betulin and betulonic acid are the major constituents found to be present in almost all the parts of these plants which can serve good potential in curing various ailments and diseases. Fruits of *D. indica* eaten row by tribal communities having good nutritional value, thus juice is taken as an energy drink.

Different prepared extracts of these plants and their parts has been reported to contain phytoconstituents like flavonoids, steroids, triterpenoids, phenolics, saponins, fixed oil which may be responsible for good pharmacological activities performed on animal models. From available reports it has been observed that different parts of *D. indica* have curing properties like wound healing, diabetes, bone fracture, in cut and burns, abdominal pains
and many more but scientific evidence of these reports is yet not much developed. Few pharmacological investigations has been done using different parts like leaves are having various activities like antioxidant, cytotoxic, antimicrobial, anti diabetic and anti inflammatory. Others parts like seeds are hepatoprotective and antimicrobial, fruit used as antileukemic.

Bark of D. pentagyna is having good antitumour potential against Dalton’s lymphoma. Other parts are also having good therapeutic potential; therefore large-scale, controlled pharmacological study is needed to validate these results. Secondly, there is still little evidence for quantification of different active phytoconstituents which may be responsible to have good pharmacological activity. It is evident from the available reports and literatures that these two plants belonging to family Dilleniaceae possesses adequate therapeutic potential and could be explored further for chemical and pharmacological investigations. Additionally, employing new modern techniques, which are more economical for better extraction of the required active phytochemicals needs to be applied. D. indica and D. pentagyna is available only in forest regions and rarely cultivated but found to be economical for better extraction of the required

Acknowledgement

Ms. Dipal Gandhi acknowledged financial assistance of Rs. 80,000 for minor research project by Nirma University, Ahmedabad, Gujarat, India.

References

Bate-smith EC, Harborne JB. Differences in flavonoids content between fresh and herbarium leaf tissue in *Dillenia*. *Phytochemistry* 1975; 10, 5:1055-8.

Dickson WC. A note on the wood anatomy of *Dillenia* (Dilleniaceae), *IAWA bulletin* 1979; 2-3.

http://www.bsienvis.nic.in/medi.htm#Dillenia indica.

Rosangkima G, Rongpi T, Prasad SB. Effect of *Dillenia pentagyna* extract on sialic acid content and agglutinability of normal and

Srivastava SD. Flavonoids from the stem of *Dillenia pentagyna*. *Phytochemistry* 1981; 20, 10:2445.

How to cite this article: